scholarly journals Sex and Mitonuclear Adaptation in Experimental Caenorhabditis elegans Populations

Genetics ◽  
2019 ◽  
Vol 211 (3) ◽  
pp. 1045-1058 ◽  
Author(s):  
Riana I. Wernick ◽  
Stephen F. Christy ◽  
Dana K. Howe ◽  
Jennifer A. Sullins ◽  
Joseph F. Ramirez ◽  
...  

To reveal phenotypic and functional genomic patterns of mitonuclear adaptation, a laboratory adaptation study with Caenorhabditis elegans nematodes was conducted in which independently evolving lines were initiated from a low-fitness mitochondrial electron transport chain (ETC) mutant, gas-1. Following 60 generations of evolution in large population sizes with competition for food resources, two distinct classes of lines representing different degrees of adaptive response emerged: a low-fitness class that exhibited minimal or no improvement compared to the gas-1 mutant ancestor, and a high-fitness class containing lines that exhibited partial recovery of wild-type fitness. Many lines that achieved higher reproductive and competitive fitness levels were also noted to evolve high frequencies of males during the experiment, consistent with adaptation in these lines having been facilitated by outcrossing. Whole-genome sequencing and analysis revealed an enrichment of mutations in loci that occur in a gas-1-centric region of the C. elegans interactome and could be classified into a small number of functional genomic categories. A highly nonrandom pattern of mitochondrial DNA mutation was observed within high-fitness gas-1 lines, with parallel fixations of nonsynonymous base substitutions within genes encoding NADH dehydrogenase subunits I and VI. These mitochondrial gene products reside within ETC complex I alongside the nuclear-encoded GAS-1 protein, suggesting that rapid adaptation of select gas-1 recovery lines was driven by fixation of compensatory mitochondrial mutations.

Genetics ◽  
2009 ◽  
Vol 183 (3) ◽  
pp. 821-829 ◽  
Author(s):  
Zhiyong Shao ◽  
Yi Zhang ◽  
Jo Anne Powell-Coffman

Oxygen is critically important to metazoan life, and the EGL-9/PHD enzymes are key regulators of hypoxia (low oxygen) response. When oxygen levels are high, the EGL-9/PHD proteins hydroxylate hypoxia-inducible factor (HIF) transcription factors. Once hydroxylated, HIFα subunits bind to von Hippel-Lindau (VHL) E3 ligases and are degraded. Prior genetic analyses in Caenorhabditis elegans had shown that EGL-9 also acted through a vhl-1-independent pathway to inhibit HIF-1 transcriptional activity. Here, we characterize this novel EGL-9 function. We employ an array of complementary methods to inhibit EGL-9 hydroxylase activity in vivo. These include hypoxia, hydroxylase inhibitors, mutation of the proline in HIF-1 that is normally modified by EGL-9, and mutation of the EGL-9 catalytic core. Remarkably, we find that each of these treatments or mutations eliminates oxygen-dependent degradation of HIF-1 protein, but none of them abolishes EGL-9-mediated repression of HIF-1 transcriptional activity. Further, analyses of new egl-9 alleles reveal that the evolutionarily conserved EGL-9 MYND zinc finger domain does not have a major role in HIF-1 regulation. We conclude that C. elegansEGL-9 is a bifunctional protein. In addition to its well-established role as the oxygen sensor that regulates HIF-1 protein levels, EGL-9 inhibits HIF-1 transcriptional activity via a pathway that has little or no requirement for hydroxylase activity or for the EGL-9 MYND domain.


Genetics ◽  
2020 ◽  
Vol 214 (3) ◽  
pp. 577-587 ◽  
Author(s):  
Siyu Serena Ding ◽  
Maksym Romenskyy ◽  
Karen S. Sarkisyan ◽  
Andre E. X. Brown

For most animals, feeding includes two behaviors: foraging to find a food patch and food intake once a patch is found. The nematode Caenorhabditis elegans is a useful model for studying the genetics of both behaviors. However, most methods of measuring feeding in worms quantify either foraging behavior or food intake, but not both. Imaging the depletion of fluorescently labeled bacteria provides information on both the distribution and amount of consumption, but even after patch exhaustion a prominent background signal remains, which complicates quantification. Here, we used a bioluminescent Escherichia coli strain to quantify C. elegans feeding. With light emission tightly coupled to active metabolism, only living bacteria are capable of bioluminescence, so the signal is lost upon ingestion. We quantified the loss of bioluminescence using N2 reference worms and eat-2 mutants, and found a nearly 100-fold increase in signal-to-background ratio and lower background compared to loss of fluorescence. We also quantified feeding using aggregating npr-1 mutant worms. We found that groups of npr-1 mutants first clear bacteria from within the cluster before foraging collectively for more food; similarly, during large population swarming, only worms at the migrating front are in contact with bacteria. These results demonstrate the usefulness of bioluminescent bacteria for quantifying feeding and generating insights into the spatial pattern of food consumption.


2001 ◽  
Vol 9 (4) ◽  
pp. 311-315 ◽  
Author(s):  
Maurizia Grasso ◽  
Marta Diegoli ◽  
Agnese Brega ◽  
Carlo Campana ◽  
Luigi Tavazzi ◽  
...  

2017 ◽  
Vol 3 (3) ◽  
pp. e160 ◽  
Author(s):  
Sailaja Golla ◽  
Jimin Ren ◽  
Craig R. Malloy ◽  
Juan M. Pascual

Objective:There is a paucity of objective, quantifiable indicators of mitochondrial disease available for clinical and scientific investigation.Methods:To this end, we explore intramyocellular lipid (IMCL) accumulation noninvasively by 7T magnetic resonance spectroscopy (MRS) as a reporter of metabolic dysfunction in MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). We reasoned that mitochondrial dysfunction may impair muscle fat metabolism, resulting in lipid deposition (as is sometimes observed in biopsies), and that MRS is well suited to quantify these lipids.Results:In 10 MELAS participants and relatives, IMCL abundance correlates with percent mitochondrial DNA mutation abundance and with disease severity.Conclusions:These results indicate that IMCL accumulation is a novel potential disease hallmark in MELAS.


2009 ◽  
Vol 390 (3) ◽  
pp. 755-757 ◽  
Author(s):  
Haris Kokotas ◽  
Maria Grigoriadou ◽  
George S. Korres ◽  
Elisabeth Ferekidou ◽  
Eleftheria Papadopoulou ◽  
...  

Mitochondrion ◽  
2019 ◽  
Vol 46 ◽  
pp. 370-379 ◽  
Author(s):  
Ling Xue ◽  
Yaru Chen ◽  
Xiaowen Tang ◽  
Juan Yao ◽  
Huimin Huang ◽  
...  

2017 ◽  
Author(s):  
Morgan N. Price ◽  
Adam P. Arkin

AbstractLarge-scale genome sequencing has identified millions of protein-coding genes whose function is unknown. Many of these proteins are similar to characterized proteins from other organisms, but much of this information is missing from annotation databases and is hidden in the scientific literature. To make this information accessible, PaperBLAST uses EuropePMC to search the full text of scientific articles for references to genes. PaperBLAST also takes advantage of curated resources that link protein sequences to scientific articles (Swiss-Prot, GeneRIF, and EcoCyc). PaperBLAST’s database includes over 700,000 scientific articles that mention over 400,000 different proteins. Given a protein of interest, PaperBLAST quickly finds similar proteins that are discussed in the literature and presents snippets of text from relevant articles or from the curators. PaperBLAST is available at http://papers.genomics.lbl.gov/.


Sign in / Sign up

Export Citation Format

Share Document