Preparation of lignin-based mesoporous biochar nano- and microparticles, and their adsorption properties for hexavalent chromium

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6363-6377
Author(s):  
Yu Hu ◽  
Meng Ling ◽  
Xianfa Li

The removal performance and mechanism of Cr(VI) from aqueous solution was studied for a novel micro-nano particle kraft lignin biochar (BC) pyrolyzed at 400 to 700 °C. The physicochemical properties of BC were determined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption-desorption isotherms. The results illustrated that the BC had irregular micro- and nanoparticles with abundant pore structure and high BET surface area (111.1 m2/g). The FT-IR results showed that the lower pyrolysis temperature resulted in more oxygen-containing functional groups. The Cr(VI) adsorption capacity decreased with the pyrolysis temperature increasing from 400 to 700 °C, and the maximum percentage removal of Cr(VI) for BC obtained at 400 °C was 100% at pH 2, which suggested that the removal efficiency was mainly dependent on functional groups. Kinetic analysis demonstrated that Cr(VI) adsorption on BC fit well to the pseudo-second-order kinetic model. The adsorption data was well fitted with the Langmuir isotherm models, and the maximum adsorption capacity was 37.2 mg/g at 298K. The BC could be reused twice with Cr(VI) removal of 63.91% and was suitable for Cr(VI) contaminated waste-water treatment.

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Maria Harja ◽  
Gabriela Buema ◽  
Nicoleta Lupu ◽  
Horia Chiriac ◽  
Dumitru Daniel Herea ◽  
...  

Fly ash/magnetite material was used for the adsorption of copper ions from synthetic wastewater. The obtained material was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area, and vibrating sample magnetometer (VSM). Batch adsorption experiments were employed in order to investigate the effects of adsorbent dose, initial Cu (II) concentration and contact time over adsorption efficiency. The experimental isotherms were modeled using Langmuir (four types of its linearization), Freundlich, Temkin, and Harkins–Jura isotherm models. The fits of the results are estimated according to the Langmuir isotherm, with a maximum adsorption capacity of 17.39 mg/g. The pseudo-second-order model was able to describe kinetic results. The data obtained throughout the study prove that this novel material represents a potential low-cost adsorbent for copper adsorption with improved adsorption capacity and magnetic separation capability compared with raw fly ash.


2020 ◽  
Vol 10 (5) ◽  
pp. 1738
Author(s):  
Kay Thwe Aung ◽  
Seung-Hee Hong ◽  
Seong-Jik Park ◽  
Chang-Gu Lee

Polyacrylonitrile (PAN) fibers were prepared via electrospinning and were modified with diethylenetriamine (DETA) to fabricate surface-modified PAN fibers. The surface-modified PAN fibers were used to evaluate their adsorption capacity for the removal of Cu(II) from aqueous solutions. Batch adsorption experiments were performed to examine the effects of the modification process, initial concentration, initial pH, and adsorbent dose on the adsorption of Cu(II). Kinetic analysis revealed that the experimental data fitted the pseudo-second-order kinetic model better than the pseudo-first-order model. Adsorption equilibrium studies were conducted using the Freundlich and Langmuir isotherm models, and the findings indicated that the PAN fibers modified with 85% DETA presented the highest adsorption capacity for Cu(II) of all analyzed samples. Moreover, the results revealed that the Freundlich model was more appropriate than the Langmuir one for describing the adsorption of Cu(II) onto the modified fibers at various initial Cu(II) concentrations. The maximum adsorption capacity was determined to be 87.77 mg/g at pH 4, and the percent removal of Cu(II) increased as the amount of adsorbent increased. Furthermore, the surface-modified PAN fibers could be easily regenerated using NaOH solution. Therefore, surface-modified PAN fibers could be used as adsorbents for the removal of Cu(II) from aqueous solutions.


2018 ◽  
Vol 5 (5) ◽  
pp. 172382 ◽  
Author(s):  
Wei Guo ◽  
Shujuan Wang ◽  
Yunkai Wang ◽  
Shaoyong Lu ◽  
Yue Gao

A magnetically modified rice husk biochar (MBC) was successfully prepared by a hydrothermal method from original biochar (BC) and subsequently used to remove phenanthrene (PHE) from aqueous solutions. The porosity, specific surface area and hydrophobicity of BC were significantly improved (approx. two times) after magnetic modification. The adsorption data fitted well to pseudo-second-order kinetic and Langmuir models. Compared with BC, MBC had a faster adsorption rate and higher adsorption capacity of PHE. The adsorption equilibrium for PHE on MBC was achieved within 1.0 h. The maximum adsorption capacity of PHE on MBC was 97.6 mg g −1 based on the analysis of the Sips model, which was significantly higher than that of other sources of BCs. The adsorption mechanism of the two BCs was mainly attributed to the action of surface functional groups and π–π-conjugated reactions. The adsorption of PHE on MBC mainly occurred in the functional groups of C–O and Fe 3 O 4 , but that on BC was mainly in the functional groups of –OH, N–H, C=C and C–O.


2019 ◽  
pp. 268-277
Author(s):  
Srdjan Stankovic ◽  
Tatjana Sostaric ◽  
Mladen Bugarcic ◽  
Aleksandra Janicijevic ◽  
Katarina Pantovic-Spajic ◽  
...  

Annual production of the sunflower seed in Serbia is between 650,000-720,000 tons. Most of this amount is used in vegetable oil industry. Abundant by-products from this processing are sunflower seed husks. Husks are usually incinerated by vegetable oil producers in order to obtain energy, used as an animal feed, or, unfortunately, landed up at some landfills. In order to promote new, added value for this abundant, renewable resource, the investigation presented in this paper was conducted. For that purpose, adsorption of Cu(II) ions from synthetic solution by unmodified sunflower seed husks was examined. ATR-FTIR was used to identify functional groups as potential active sites for Cu(II) sorption. Zeta potential values were determined to reveal the surface charge, while the cation exchange capacity (CEC) was determined to reveal the amount of exchangeable ions on its surface. ATR-FTIR analysis revealed the presence of specific functional groups (hydroxyl, carboxyl, carbonyl, and amine) responsible for removal of Cu(II) ions. The total CEC of sunflower husk is 47.74 meq/100g and Ca(II) and Mg(II) ions are in dominant exchangeable positions. The study of ion-exchange mechanism involvement was done and results confirmed that this mechanism is not the only mechanism which is involved in copper sorption. Also, the results show that the Cu(II) ions have preference for Mg(II) ions substitution. Sorption experiments were conducted in batch system. The effect of operating parameters (pH, contact time, initial concentration of Cu(II) ions and adsorbent dosage) on the adsorption capacity were investigated. The obtained experimental data were fitted by Langmuir and Freundlich isotherm models. The maximum adsorption capacity for Cu(II) ions calculated from Langmuir adsorption isotherm was 34.89 mg/g which is 15 to 35% higher than the capacity that other researchers reported previously for the same material and pollutant. These results are suggesting that sunflower seed husks have a potential to be applied as an effective adsorbent of copper ions from contaminated waters.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3692
Author(s):  
Oana Buriac ◽  
Mihaela Ciopec ◽  
Narcis Duţeanu ◽  
Adina Negrea ◽  
Petru Negrea ◽  
...  

Platinum is a precious metal with many applications, such as: catalytic converters, laboratory equipment, electrical contacts and electrodes, digital thermometers, dentistry, and jewellery. Due to its broad usage, it is essential to recover it from waste solutions resulted out of different technological processes in which it is used. Over the years, several recovery techniques were developed, adsorption being one of the simplest, effective and economical method used for platinum recovery. In the present paper a new adsorbent material (XAD7-DB30C10) for Pt (IV) recovery was used. Produced adsorbent material was characterized by X-ray dispersion (EDX), scanning electron microscopy (SEM) analysis, Fourier Transform Infrared Spectroscopy and Brunauer-Emmett-Teller (BET) surface area analysis. Adsorption isotherms, kinetic models, thermodynamic parameters and adsorption mechanism are presented in this paper. Experimental data were fitted using three non-linear adsorption isotherms: Langmuir, Freundlich and Sips, being better fitted by Sips adsorption isotherm. Obtained kinetic data were correlated well with the pseudo-second-order kinetic model, indicating that the chemical sorption was the rate-limiting step. Thermodynamic parameters (ΔG°, ΔH°, ΔS°) showed that the adsorption process was endothermic and spontaneous. After adsorption, metallic platinum was recovered from the exhausted adsorbent material by thermal treatment. Adsorption process optimisation by design of experiments was also performed, using as input obtained experimental data, and taking into account that initial platinum concentration and contact time have a significant effect on the adsorption capacity. From the optimisation process, it has been found that the maximum adsorption capacity is obtained at the maximum variation domains of the factors. By optimizing the process, a maximum adsorption capacity of 15.03 mg g−1 was achieved at a contact time of 190 min, initial concentration of 141.06 mg L−1 and the temperature of 45 °C.


2015 ◽  
Vol 72 (6) ◽  
pp. 896-907 ◽  
Author(s):  
S. M. Anisuzzaman ◽  
Collin G. Joseph ◽  
D. Krishnaiah ◽  
A. Bono ◽  
L. C. Ooi

In this study, durian (Durio zibethinus Murray) skin was examined for its ability to remove methylene blue (MB) dye from simulated textile wastewater. Adsorption equilibrium and kinetics of MB removal from aqueous solutions at different parametric conditions such as different initial concentrations (2–10 mg/L), biosorbent dosages (0.3–0.7 g) and pH solution (4–9) onto durian skin were studied using batch adsorption. The amount of MB adsorbed increased from 3.45 to 17.31 mg/g with the increase in initial concentration of MB dye; whereas biosorbent dosage increased from 1.08 to 2.47 mg/g. Maximum dye adsorption capacity of the durian skin was found to increase from 3.78 to 6.40 mg/g, with increasing solution pH. Equilibrium isotherm data were analyzed according to Langmuir and Freundlich isotherm models. The sorption equilibrium was best described by the Freundlich isotherm model with maximum adsorption capacity of 7.23 mg/g and this was due to the heterogeneous nature of the durian skin surface. Kinetic studies indicated that the sorption of MB dye tended to follow the pseudo second-order kinetic model with promising correlation of 0.9836 < R2 < 0.9918.


2019 ◽  
Vol 79 (3) ◽  
pp. 466-479 ◽  
Author(s):  
Fatemeh Mojoudi ◽  
Amir Hossein Hamidian ◽  
Yu Zhang ◽  
Min Yang

Abstract Novel porous nanocomposite (AC/NC/TGO) was successfully synthesized through the composition of activated carbon, nanoclay and graphene oxide as a Pb(II) adsorbent for the treatment of contaminated aqueous environment. The physicochemical properties and morphology of AC/NC/TGO were examined by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption techniques. Results showed Pb(II) adsorption on the AC/NC/TGO was rapid in the first 20 min and reached equilibrium in 40 min. Kinetic studies showed significant fit to the pseudo second order kinetic model (R2 ≥ 0.9965) giving an equilibrium rate constant (K2) of 0.0017 g mg−1 min−1 for Pb(II) loaded. The experimental adsorption data were better fitted with the Langmuir isotherm model than with the Freundlich isotherm model. Prepared nanocomposite exhibited high values of Brunauer–Emmett–Teller (BET) surface area of 1,296 m2 g−1 and total pore volume of 1.01 cm3 g−1. Maximum adsorption capacity (Qmax = 208 mg g−1) and a relatively high adsorption rate was achieved at pH 5.0 using an adsorbent dose of 0.5 g L−1 and an initial lead concentration of 50 mg L−1. High adsorption capacity, reusability, fast kinetics and simple synthesis method indicate that prepared nanocomposite can be suggested as a high-performance adsorbent for Pb(II) removal from polluted water.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3263
Author(s):  
Taimur Khan ◽  
Teh Sabariah Binti Abd Manan ◽  
Mohamed Hasnain Isa ◽  
Abdulnoor A.J. Ghanim ◽  
Salmia Beddu ◽  
...  

This research optimized the adsorption performance of rice husk char (RHC4) for copper (Cu(II)) from an aqueous solution. Various physicochemical analyses such as Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FESEM), carbon, hydrogen, nitrogen, and sulfur (CHNS) analysis, Brunauer–Emmett–Teller (BET) surface area analysis, bulk density (g/mL), ash content (%), pH, and pHZPC were performed to determine the characteristics of RHC4. The effects of operating variables such as the influences of aqueous pH, contact time, Cu(II) concentration, and doses of RHC4 on adsorption were studied. The maximum adsorption was achieved at 120 min of contact time, pH 6, and at 8 g/L of RHC4 dose. The prediction of percentage Cu(II) adsorption was investigated via an artificial neural network (ANN). The Fletcher–Reeves conjugate gradient backpropagation (BP) algorithm was the best fit among all of the tested algorithms (mean squared error (MSE) of 3.84 and R2 of 0.989). The pseudo-second-order kinetic model fitted well with the experimental data, thus indicating chemical adsorption. The intraparticle analysis showed that the adsorption process proceeded by boundary layer adsorption initially and by intraparticle diffusion at the later stage. The Langmuir and Freundlich isotherm models interpreted well the adsorption capacity and intensity. The thermodynamic parameters indicated that the adsorption of Cu(II) by RHC4 was spontaneous. The RHC4 adsorption capacity is comparable to other agricultural material-based adsorbents, making RHC4 competent for Cu(II) removal from wastewater.


2021 ◽  
Author(s):  
Shasha Liu ◽  
Chen Shen ◽  
Yuhui Wang ◽  
Yong Huang ◽  
Xun Hu ◽  
...  

Abstract To understand the interaction mechanism between adsorbent and adsorbate, activated biochar, prepared from pine sawdust using CO2 and H2O as activator, was employed to adsorb methylene blue in printing and dyeing pollutants. The pore structure, carbon structure of the aromatic ring system, and functional groups were investigated though SEM, nitrogen adsorption/desorption device (BET), Raman, and XPS characterization, and the adsorption kinetics and possible adsorption mechanism were also studied. The results showed that the activated biochar prepared by CO2 activation had more specific surface area, pore structure, and surface oxygen-containing functional groups than that prepared by H2O, which was more conductive to improving its adsorption capacity. The electrostatic interaction between the surface oxygen-containing functional groups in the adsorbents and the π-π interaction formed in the aromatic rings enhanced the adsorption capacity of activated biochar to methylene blue. The adsorption process of methylene blue by activated biochar was spontaneous, and it conformed to the pseudo-second-order kinetic characteristics and Langmuir adsorption isotherm equation. It was a monolayer adsorption and the maximum adsorption capacity was about 160 mg/g. Activated biochar as an adsorbent for wastewater treatment has promising application and development prospects.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 914 ◽  
Author(s):  
Irene García-Díaz ◽  
Felix López ◽  
Francisco Alguacil

This research describes the adsorption of Cu2+ onto a helical ribbon carbon nanofiber. The characterization of carbon nanofiber by zeta potential showed an isoelectronic pH of 1.9. The influence of different adsorption factors, such as stirring speed, temperature, pH, adsorbent concentration, etc., on the Cu2+ adsorption capacity have been evaluated. The pH has a great influence on Cu2+ adsorption, with the maximum adsorption capacity reached at a pH of 10. The experimental data fit well to pseudo-second order kinetic and Langmuir isotherm models (qm = 8.80 mg·g−1) at T = 298 K and pH = 4. The Cu2+ adsorption could be explained by the particle diffusion model. Results showed that carbon nanofiber could be successfully used for the elimination of Cu2+ from wastewater.


Sign in / Sign up

Export Citation Format

Share Document