scholarly journals The role of dental stem cells in regeneration

2015 ◽  
Vol 88 (4) ◽  
pp. 479-482 ◽  
Author(s):  
Monica Angela Maxim ◽  
Olga Soritau ◽  
Mihaela Baciut ◽  
Simion Bran ◽  
Grigore Baciut

Mesenchymal stem cells (MSCs) are adult stem cells that have the capacity of rising multiple cell types.A rich source of mesenchymal stem cells is represented by the dental tissues: the periodontal ligament, the dental pulp, the apical papilla, the dental follicle and the deciduous teeth.The aim of this review is to characterize the main dental- derived mesenchymal stem cell population, and to show their important role in tissue regeneration based on their properties : the multi-potency, the high proliferation rate, the differentiation in multiple cell lineages, the high cell viability and the positive expression for mesenchymal cell markers.Tissue regeneration or de novo' formation of craniofacial structures is the future of regenerative medicine, offering a solution for congenital malformations, traumas and other diseases. 

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Atsushi Tomokiyo ◽  
Shinichiro Yoshida ◽  
Sayuri Hamano ◽  
Daigaku Hasegawa ◽  
Hideki Sugii ◽  
...  

Mesenchymal stem cells (MSCs) are a kind of somatic stem cells that exert a potential to differentiate into multiple cell types and undergo robust clonal self-renewal; therefore, they are considered as a highly promising stem cell population for tissue engineering. MSCs are identified in various adult organs including dental tissues. Periodontal ligament (PDL) is a highly specialized connective tissue that surrounds the tooth root. PDL also contains MSC population, and many researchers have isolated them and performed their detailed characterization. Here, we review the current understanding of the features and functions of MSC population in PDL tissues and discuss their possibility for the application of PDL regeneration.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hakan Orbay ◽  
Morikuni Tobita ◽  
Hiroshi Mizuno

Mesenchymal stem cells (MSCs) are adult stem cells that were initially isolated from bone marrow. However, subsequent research has shown that other adult tissues also contain MSCs. MSCs originate from mesenchyme, which is embryonic tissue derived from the mesoderm. These cells actively proliferate, giving rise to new cells in some tissues, but remain quiescent in others. MSCs are capable of differentiating into multiple cell types including adipocytes, chondrocytes, osteocytes, and cardiomyocytes. Isolation and induction of these cells could provide a new therapeutic tool for replacing damaged or lost adult tissues. However, the biological properties and use of stem cells in a clinical setting must be well established before significant clinical benefits are obtained. This paper summarizes data on the biological properties of MSCs and discusses current and potential clinical applications.


2006 ◽  
Vol 85 (11) ◽  
pp. 966-979 ◽  
Author(s):  
J.J. Mao ◽  
W.V. Giannobile ◽  
J.A. Helms ◽  
S.J. Hollister ◽  
P.H. Krebsbach ◽  
...  

Craniofacial tissue engineering promises the regeneration or de novo formation of dental, oral, and craniofacial structures lost to congenital anomalies, trauma, and diseases. Virtually all craniofacial structures are derivatives of mesenchymal cells. Mesenchymal stem cells are the offspring of mesenchymal cells following asymmetrical division, and reside in various craniofacial structures in the adult. Cells with characteristics of adult stem cells have been isolated from the dental pulp, the deciduous tooth, and the periodontium. Several craniofacial structures—such as the mandibular condyle, calvarial bone, cranial suture, and subcutaneous adipose tissue—have been engineered from mesenchymal stem cells, growth factor, and/or gene therapy approaches. As a departure from the reliance of current clinical practice on durable materials such as amalgam, composites, and metallic alloys, biological therapies utilize mesenchymal stem cells, delivered or internally recruited, to generate craniofacial structures in temporary scaffolding biomaterials. Craniofacial tissue engineering is likely to be realized in the foreseeable future, and represents an opportunity that dentistry cannot afford to miss.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Francesca Posa ◽  
Adriana Di Benedetto ◽  
Graziana Colaianni ◽  
Elisabetta A. Cavalcanti-Adam ◽  
Giacomina Brunetti ◽  
...  

1α,25-Dihydroxyvitamin D3(1,25(OH)2D3), the active metabolite of vitamin D (Vit D), increases intestinal absorption of calcium and phosphate, maintaining a correct balance of bone remodeling. Vit D has an anabolic effect on the skeletal system and is key in promoting osteoblastic differentiation of human Mesenchymal Stem Cells (hMSCs) from bone marrow. MSCs can be also isolated from the immature form of the tooth, the dental bud: Dental Bud Stem Cells (DBSCs) are adult stem cells that can effectively undergo osteoblastic differentiation. In this work we investigated the effect of Vit D on DBSCs differentiation into osteoblasts. Our data demonstrate that DBSCs, cultured in an opportune osteogenic medium, differentiate into osteoblast-like cells; Vit D treatment stimulates their osteoblastic features, increasing the expression of typical markers of osteoblastogenesis like RUNX2 and Collagen I (Coll I) and, in a more important way, determining a higher production of mineralized matrix nodules.


2017 ◽  
Vol 8 ◽  
pp. 204173141770561 ◽  
Author(s):  
Hannah Donnelly ◽  
Carol-Anne Smith ◽  
Paula E Sweeten ◽  
Nikolaj Gadegaard ◽  
RM Dominic Meek ◽  
...  

Adult stem cells, such as mesenchymal stem cells, are a multipotent cell source able to differentiate towards multiple cell types. While used widely in tissue engineering and biomaterials research, they present inherent donor variability and functionalities. In addition, their potential to form multiple tissues is rarely exploited. Here, we combine an osteogenic nanotopography and a chondrogenic hyaluronan hydrogel with the hypothesis that we can make a complex tissue from a single multipotent cell source with the exemplar of creating a three-dimensional bone–cartilage boundary environment. Marrow stromal cells were seeded onto the topographical surface and the temperature gelling hydrogel laid on top. Cells that remained on the nanotopography spread and formed osteoblast-like cells, while those that were seeded into or migrated into the gel remained rounded and expressed chondrogenic markers. This novel, simple interfacial environment provides a platform for anisotropic differentiation of cells from a single source, which could ultimately be exploited to sort osteogenic and chondrogenic progenitor cells from a marrow stromal cell population and to develop a tissue engineered interface.


Author(s):  
Ratan K Choudhary ◽  
Fenq-Qi Zhao

: Adult stem cells like mammary and mesenchymal stem cells have received significant attention because these stem cells (SCs) possess therapeutic potential in treating many animal diseases. These cells can be administered in an autologous or allogenic fashion, either freshly isolated from the donor tissue or previously cultured and expanded in vitro. Expansion of adult stem cells is a prerequisite before therapeutic application because sufficient numbers are required in dosage calculation. Stem cells directly and indirectly (by secreting various growth factors and angiogenic factors called secretome) act to repair and regenerate injured tissues. Recent studies on mammary stem cells showed in vivo and in vitro expansion ability by removing the blockage of asymmetrical cell division. Compounds like purine analogs (xanthosine, xanthine, and inosine) or hormones (progesterone and bST) help increase stem cell population by promoting cell division. Such methodology of enhancing stem cells number, either in vivo or in vitro, may help in preclinical studies for translational research like treating diseases like mastitis. The application of mesenchymal stem cells has also been shown to benefit mammary gland health due to the ‘homing’ property of stem cells. In addition to that, the multiple positive effects of stem cell secretome are on mammary tissue healing and killing bacteria is novel in the production of quality milk. This systematic review discusses some of the studies on stem cells that have been useful in increasing the stem cell population and increasing mammary stem/progenitor cells. Finally, we provide insights into how enhancing mammary stem cell population could potentially increase terminally differentiated cells, ultimately leading to more milk production.


Author(s):  
Mohammad Saeedi ◽  
Muhammad Sadeqi Nezhad ◽  
Fatemeh Mehranfar ◽  
Mahdieh Golpour ◽  
Mohammad Ali Esakandari ◽  
...  

: Mesenchymal stem cells (MSCs), a form of adult stem cells, are known to have a self-renewing property and the potential to specialize into a multitude of cells and tissues such as adipocytes, cartilage cells, and fibroblasts. MSCs can migrate and home to the desired target zone where inflammation is present. The unique characteristics of MSCs in repairing, differentiation, regeneration, and its high capacity of immune modulation has attracted tremendous attention for exerting them in clinical purposes, as they contribute to tissue regeneration process and anti-tumor activity. The MSCs-based treatment has demonstrated remarkable applicability towards various diseases such as heart and bone malignancies, and cancer cells. Importantly, genetically engineered MSCs, as a state-of-the-art therapeutic approach, could address some clinical hurdles by systemic secretion of cytokines and other agents with a short half-life and high toxicity. Therefore, understanding the biological aspects and the characteristics of MSCs is an imperative issue of concern. Herein, we provide an overview of the therapeutic application and the biological features of MSCs against different inflammatory diseases and cancer cells. We further shed light on MSCs physiological interaction, such as migration, homing, and tissue repairing mechanisms with different healthy and inflamed tissues.


2020 ◽  
Vol 15 (7) ◽  
pp. 623-638
Author(s):  
Saeideh Gholamzadeh Khoei ◽  
Fateme Karimi Dermani ◽  
Sara Malih ◽  
Nashmin Fayazi ◽  
Mohsen Sheykhhasan

Background: Cardiovascular disease (CVD), including disorders of cardiac muscle and vascular, is the major cause of death globally. Many unsuccessful attempts have been made to intervene in the disease's pathogenesis and treatment. Stem cell-based therapies, as a regeneration strategy, cast a new hope for CVD treatment. One of the most well-known stem cells is mesenchymal stem cells (MSCs), classified as one of the adult stem cells and can be obtained from different tissues. These cells have superior properties, such as proliferation and highly specialized differentiation. On the other hand, they have the potential to modulate the immune system and anti-inflammatory activity. One of their most important features is the secreting the extracellular vesicles (EVs) like exosomes (EXOs) as an intercellular communication system mediating the different physiological and pathophysiological affairs. Methods: In this review study, the importance of MSC and its secretory exosomes for the treatment of heart disease has been together and specifically addressed and the use of these promising natural and accessible agents is predicted to replace the current treatment modalities even faster than we imagine. Results: MSC derived EXOs by providing a pro-regenerative condition allowing innate stem cells to repair damaged tissues successfully. As a result, MSCs are considered as the appropriate cellular source in regenerative medicine. In the plethora of experiments, MSCs and MSC-EXOs have been used for the treatment and regeneration of heart diseases and myocardial lesions. Conclusions: Administration of MSCs has been provided a replacement therapeutic option for heart regeneration, obtaining great attention among the basic researcher and the medical doctors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ameneh Jafari ◽  
Mostafa Rezaei-Tavirani ◽  
Behrouz Farhadihosseinabadi ◽  
Hakimeh Zali ◽  
Hassan Niknejad

AbstractCancer is a leading cause of death in both developed and developing countries, and because of population growth and aging, it is a growing medical burden worldwide. With robust development in medicine, the use of stem cells has opened new treatment modalities in cancer therapy. In adult stem cells, mesenchymal stem cells (MSCs) are showing rising promise in cancer treatment due to their unique properties. Among different sources of MSCs, human amniotic fluid/membrane is an attractive and suitable reservoir. There are conflicting opinions about the role of human amniotic membrane/fluid mesenchymal stem cells (hAMSCS/hAFMSCs) in cancer, as some studies demonstrating the anticancer effects of these cells and others suggesting their progressive effects on cancer. This review focuses on recent findings about the role of hAMSCs/hAFMSCs in cancer treatment and summarizes the suppressing as well as promoting effects of these cells on cancer progression and underling mechanisms.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Chad M. Teven ◽  
Xing Liu ◽  
Ning Hu ◽  
Ni Tang ◽  
Stephanie H. Kim ◽  
...  

Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.


Sign in / Sign up

Export Citation Format

Share Document