scholarly journals SOLID PHASE EXTRACTANTS BASED ON POROUS POLYMERS IMPREGNATED WITH MULTIDENTATE CHELATING LIGANDS FOR ACTINIDE AND LANTHANIDE REMOVAL

2021 ◽  
Vol 17 (2) ◽  
pp. 64-71
Author(s):  
Кonstantin Belikov ◽  
Ekateryna Bryleva ◽  
Zinaida Bunina ◽  
Victoria Varchenko ◽  
Anna Andryushchenko ◽  
...  

Introduction. Treatment and disposal of radioactive wastes as well as monitoring of radioactive isotope content in environmental objects are actual tasks in the developed world. Lanthanide and transuranium element removal from spent nuclear fuel of nuclear power plants allows decreasing waste amount to be dumped and diminishing the risk of environmental pollution by radionuclides. Problem Statement. Considering extreme radiotoxicity of transuranium elements and tight standards restricting their activity in air and water, there is an urgent need to develop accurate and highly sensitive methods for pollution control. Purpose. Development of solid phase extractants (SPEs) based on porous polymers impregnated with multidentate chelating ligands for lanthanide, uranium and transuranium element removal from aqueous solutions. Materials and Methods. The materials used are porous divinylbenzene polymers of POROLAS brand and styrene-divinylbenzene copolymers from Smoly SE (Kamianske); multidentate chelating ligands of actinides and lanthanides such as N,N,N´,N´-tetra-n-octyl-oxapentane-1,5-diamide (TODGA) and carbamoyl phosphine oxides (CMPO); sorbent from TrisKem (France) based on TRU Resin (Eichrom Industries, Inc.). The research techniques are inductively coupled plasma atomic emission spectrometry, IR spectroscopy, scanning electron spectroscopy, spectrofluorimetry. Results. The solid-phase extractants (SPEs) for actinide and lanthanide removal from aqueous solutions have been synthesized by impregnation of porous polymeric POROLAS matrices and TODGA, CMPO-(PhOct) and CMPO-(Ph2). Sorption kinetics has been studied and capacity values for the different sorbents have been estimated. Extractive columns for uranium and europium concentration have been manufactured. Conclusions. SPEs studied demonstrate a high efficiency in removing uranium and europium from aqueous solutions. Due to their characteristics obtained materials may be used for preconcentration of target ions in radioecologycal monitoring procedures.

2019 ◽  
Vol 13 ◽  
Author(s):  
Haisheng Li ◽  
Wenping Wang ◽  
Yinghua Chen ◽  
Xinxi Zhang ◽  
Chaoyong Li

Background: The fly ash produced by coal-fired power plants is an industrial waste. The environmental pollution problems caused by fly ash have been widely of public environmental concern. As a waste of recoverable resources, it can be used in the field of building materials, agricultural fertilizers, environmental materials, new materials, etc. Unburned carbon content in fly ash has an influence on the performance of resource reuse products. Therefore, it is the key to remove unburned carbon from fly ash. As a physical method, triboelectrostatic separation technology has been widely used because of obvious advantages, such as high-efficiency, simple process, high reliability, without water resources consumption and secondary pollution. Objective: The related patents of fly ash triboelectrostatic separation had been reviewed. The structural characteristics and working principle of these patents are analyzed in detail. The results can provide some meaningful references for the improvement of separation efficiency and optimal design. Methods: Based on the comparative analysis for the latest patents related to fly ash triboelectrostatic separation, the future development is presented. Results: The patents focused on the charging efficiency and separation efficiency. Studies show that remarkable improvements have been achieved for the fly ash triboelectrostatic separation. Some patents have been used in industrial production. Conclusion: According to the current technology status, the researches related to process optimization and anti-interference ability will be beneficial to overcome the influence of operating conditions and complex environment, and meet system security requirements. The intelligent control can not only ensure the process continuity and stability, but also realize the efficient operation and management automatically. Meanwhile, the researchers should pay more attention to the resource utilization of fly ash processed by triboelectrostatic separation.


2016 ◽  
Vol 4 (2) ◽  
pp. 2450-2457 ◽  
Author(s):  
Nikita Tawanda Tavengwa ◽  
Nomso Hintsho ◽  
Shane Durbach ◽  
Isabel Weiersbye ◽  
Ewa Cukrowska ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 1586-1593
Author(s):  
Tingting Yan ◽  
Shengwen Zhong ◽  
Miaomiao Zhou ◽  
Xiaoming Guo ◽  
Jingwei Hu ◽  
...  

Abstract The extraction of Li from the spent LiFePO4 cathode is enhanced by the selective removal using interactions between HCl and NaClO to dissolve the Li+ ion while Fe and P are retained in the structure. Several parameters, including the effects of dosage and drop acceleration of HCl and NaClO, reaction time, reaction temperature, and solid–liquid ratio on lithium leaching, were tested. The Total yields of lithium can achieve 97% after extraction process that lithium is extracted from the precipitated mother liquor, using an appropriate extraction agent that is a mixture of P507 and TBP and NF. The method also significantly reduced the use of acid and alkali, and the economic benefit of recycling is improved. Changes in composition, morphology, and structure of the material in the dissolution process are characterized by inductively coupled plasma optical emission spectrometry, scanning electron microscope, X-ray diffraction, particle size distribution instrument, and moisture analysis.


Proceedings ◽  
2018 ◽  
Vol 2 (10) ◽  
pp. 567 ◽  
Author(s):  
Željka Fiket ◽  
Ana Galović ◽  
Gordana Medunić ◽  
Martina Furdek Turk ◽  
Maja Ivanić ◽  
...  

Rare earth elements, i.e., lanthanides, are important components of many recently developed technology applications. However, their increasing use in the industrial sector, medicine, and agriculture over the last few decades has provided them with the title of “new pollutants”. Different methods are now applied for the removal of various pollutants from wastewaters, whereby the emphasis is placed on adsorption due to its simplicity, high efficiency, and low cost. In the present study, geopolymers prepared from coal ash were examined regarding their capacity for the adsorption of lanthanides from model solutions. The obtained results indicate the efficient removal of lanthanides by prepared geopolymers, depicting them as effective adsorbents for this group of elements.


2003 ◽  
Vol 75 (14) ◽  
pp. 3596-3605 ◽  
Author(s):  
Yufeng Shen ◽  
Ronald J. Moore ◽  
Rui Zhao ◽  
Josip Blonder ◽  
Deanna L. Auberry ◽  
...  

Author(s):  
Gennadii Liubchik ◽  
◽  
Nataliia Fialko ◽  
Aboubakr Regragui ◽  
Julii Sherenkovskii ◽  
...  

The article presents the enthalpy-entropy methodology of thermodynamic analysis of gas turbine and combined power plants on their basis, the results of testing the method on a real technical facility, proving its high efficiency.


Sign in / Sign up

Export Citation Format

Share Document