scholarly journals Estimation Characteristics of Input Voltage Waveform of Single-Phase PFC Converter for Both Sinusoidal and Rectangular Input Voltages

2006 ◽  
Vol 126 (4) ◽  
pp. 489-496
Author(s):  
Hiroatsu Fukuoka ◽  
Quan Li ◽  
Toshiyuki Kouno ◽  
Takaharu Takeshita
Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2100 ◽  
Author(s):  
Rosario Miceli ◽  
Giuseppe Schettino ◽  
Fabio Viola

In this paper, a novel approach to low order harmonic mitigation in fundamental switching frequency modulation is proposed for high power photovoltaic (PV) applications, without trying to solve the cumbersome non-linear transcendental equations. The proposed method allows for mitigation of the first-five harmonics (third, fifth, seventh, ninth, and eleventh harmonics), to reduce the complexity of the required procedure and to allocate few computational resource in the Field Programmable Gate Array (FPGA) based control board. Therefore, the voltage waveform taken into account is different respect traditional voltage waveform. The same concept, known as “voltage cancelation”, used for single-phase cascaded H-bridge inverters, has been applied at a single-phase five-level cascaded H-bridge multilevel inverter (CHBMI). Through a very basic methodology, the polynomial equations that drive the control angles were detected for a single-phase five-level CHBMI. The acquired polynomial equations were implemented in a digital system to real-time operation. The paper presents the preliminary analysis in simulation environment and its experimental validation.


Author(s):  
Peethala Rajiv Roy ◽  
P. Parthiban ◽  
B. Chitti Babu

Abstract This paper deals with implementation of a single-phase three level converter system under low voltage condition. The frequency of the switches is made constant and involves change in ${t_{on}}$ and ${t_{off}}$ duration. For this condition the pulse width modulation control scheme for a single phase three level rectifier is developed to improve the power quality. The hysteresis current control technique is adopted to bring forth three-level PWM on the dc side of the bridge rectifier and to achieve high power factor and low harmonic distortion. Based on the proposed control scheme, the line current is driven to follow the sinusoidal current command which is in phase with the supply voltage. By using three-level voltage pattern the blocking voltage of each power device is clamped to half of the dc link voltage. The simulation and experimental results of 20W converter under low input voltage condition are shown to verify the circuit performance. Open loop simulation and hardware tests are implemented by applying a low voltage of 15 V(rms) on the input side.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950089 ◽  
Author(s):  
V. Thiyagarajan ◽  
P. Somasundaram ◽  
K. Ramash Kumar

Multilevel inverter (MLI) has become more popular in high power, high voltage industries owing to its high quality output voltage waveform. This paper proposes a novel single phase extendable type MLI topology. The term ‘extendable’ is included since the presented topology can be extended with maximum number of dc voltage sources to synthesize larger output levels. This topology can be operated in both symmetrical and asymmetrical conditions. The major advantages of the proposed inverter topology include minimum switching components, reduced gate driver circuits, less harmonic distortion and reduced switching losses. The comparative analysis based on the number of switches, dc voltage sources and conduction switches between the proposed topology and other existing topologies is presented in this paper. The comparison results show that the proposed inverter topology requires fewer components. The performance of the proposed MLI topology has been analyzed in both symmetrical and asymmetrical conditions. The simulation model is developed using MATLAB/SIMULINK software to verify the performance of the proposed inverter topology and also the feasibility of the presented topology during the symmetrical condition has been validated experimentally.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 268 ◽  
Author(s):  
Ali Shojaei ◽  
Bahram Najafi ◽  
Hani Vahedi

In this paper the standalone operation of the modified seven-level Packed U-Cell (MPUC) inverter is presented and analyzed. The MPUC inverter has two DC sources and six switches, which generate seven voltage levels at the output. Compared to cascaded H-bridge and neutral point clamp multilevel inverters, the MPUC inverter generates a higher number of voltage levels using fewer components. The experimental results of the MPUC prototype validate the appropriate operation of the multilevel inverter dealing with various load types including motor, linear, and nonlinear ones. The design considerations, including output AC voltage RMS value, switching frequency, and switch voltage rating, as well as the harmonic analysis of the output voltage waveform, are taken into account to prove the advantages of the introduced multilevel inverter.


Author(s):  
Jianxiang Wang ◽  
Yuxi Chen ◽  
Yuxin Peng ◽  
Xian Song ◽  
Yangkun Zhang ◽  
...  

This paper presents a data-driven method for waveform optimization of a two-axis smooth impact drive mechanism (SIDM) actuator. The actuator was constructed by two piezoelectric elements (PZTs) perpendicularly fixed to an L-shaped base for two-axis positioning. An XY stage was designed and constructed by assembling the two-axis SIDM actuator. The XY stage could position long motion ranges of several millimeters with nanometer-level resolution, and the size was confined to be 20 mm (X) × 20 mm (Y) × 4.5 mm (H). The data-driven method based on the long short-term memory (LSTM) neural networks was used to predict the optimum input voltage waveform of the actuator. With the optimized input voltage waveform, it was verified that the maximum velocity of the stage could be improved about two times.


2019 ◽  
Vol 11 (12) ◽  
pp. 3453 ◽  
Author(s):  
Taghvaie ◽  
Alijani ◽  
Adabi ◽  
Rezanejad ◽  
Adabi ◽  
...  

This paper presents a transformerless step-up multilevel inverter based on a switched-capacitor structure. One of the main contributions of the proposed topology is replacing the separated DC voltage source with capacitors which are charged at predetermined time intervals. Therefore, a high-level staircase voltage waveform can be achieved by discharging some of these capacitors on the load. The other contribution of the proposed structure is to eliminate the magnetic elements which traditionally boost the input DC voltage. In addition, asymmetrical or unequal amounts of capacitor voltages create more voltage levels, which enable voltage level increments without increasing the number of semiconductor devices. This paper introduces a self-balanced boost Switched-Capacitors Multilevel Inverter (SCMLI) which is able to create a nearly sinusoidal voltage waveform with a maximum voltage of up to 45 times that of the input voltage DC source. Higher level output voltage levels are also achievable by extending the circuit topology. After determination of the switching angles and selecting the proper switching states for each level, an offline NLC method is used for modulation, which eases the control implementation. Analysis, simulation and experiments are carried out for a 91-level inverter (45 levels for positive and negative voltages and one for zero voltage) are presented.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 394 ◽  
Author(s):  
Dai-Van Vo ◽  
Minh-Khai Nguyen ◽  
Duc-Tri Do ◽  
Youn-Ok Choi

A novel single-phase nine-level boost inverter is proposed in this paper. The proposed inverter has an output voltage which is higher than the input voltage by switching capacitors in series and in parallel. The maximum output voltage of the proposed inverter is determined by using the boost converter circuit, which has been integrated into the circuit. The proposed topology is able to invert the multilevel voltage with the high step-up output voltage, simple structure and fewer power switches. In this paper, the circuit configuration, the operating principle, and the output voltage expression have been derived. The proposed converter has been verified by simulation and experiment with the help of PSIM software and a laboratory prototype. The experimental results match the theoretical calculation and the simulation results.


2014 ◽  
Vol 556-562 ◽  
pp. 1541-1544
Author(s):  
Jia Zhou ◽  
Xiao Long Tan ◽  
Wen Bin Wang

DC voltage, input voltage and current need testing for control circuit of general PFC circuit that makes circuit complex and high cost. And using of sensors decreases the reliability of circuit. Hence, simulation analysis of single phase APFC without DC voltage sensor is present in this paper.


Sign in / Sign up

Export Citation Format

Share Document