Performance Comparison of the Efficiency and Power Density among Multilevel Converter Topologies for a PV Inverter by the Pareto-Front Curve

2014 ◽  
Vol 134 (2) ◽  
pp. 209-219 ◽  
Author(s):  
Yugo Kashihara ◽  
Jun-ichi Itoh
2021 ◽  
Author(s):  
Victor R. F. B. de Souza ◽  
Luciano S. Barros ◽  
Flavio B. Costa

Nowadays, power converters play a fundamental role in the conditioning and processing of active and reactive power, and are directly related to power quality indexes. In this sense, new multi-level converter topologies have been integrated in order to provide higher power processing capacity with lower harmonic distortion, switch stress, heating, and losses. The use of these structures compared to conventional two-level converters is especially suitable for high power of the order of megawatt. Considering the relevance of this approach, this paper presents a comparative performance analysis among the conventional two-level topology (2L-VSC) and two multilevel topologies in a grid-connected system: neutral point clamped (NPC) and modular multilevel converter (MMC). Simulation test results present the impacts on voltages and currents for the switches and the whole system, as well as the evaluation of the total harmonic distortion (THD) in order to highlight the crucial points of each topology for this kind of application.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1292
Author(s):  
Yifan Zhang ◽  
Chushan Li ◽  
David Xu ◽  
Wuhua Li ◽  
Jian Zhang ◽  
...  

Higher-voltage-standard and higher-power-rating aerospace power systems are being investigated intensively in the aerospace industry to address challenges in terms of improving emissions, fuel economy, and also cost. Multilevel converter topologies become attractive because of their higher efficiency under high-voltage and high-switching-frequency conditions. In this paper, an asymmetrical-voltage-level back-to-back multilevel converter is proposed, which consists of a five-level (5L) rectifier stage and a three-level (3L) inverter stage. Based on the comparison, such an asymmetrical back-to-back structure can achieve high efficiency and minimize the converter weight on both rectifier and inverter sides. A compact triple-surface-mounted heatsink structure is designed to realize high density and manufacturable thermal management. This topology and structure are evaluated with a full-rating prototype. According to the evaluation, the achieved power density is 2.61 kVA/kg, which is 30% higher than that of traditional solutions. The efficiency at the rated power of the back-to-back system is 95.8%.


Electronics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 134 ◽  
Author(s):  
Muhammad Ali ◽  
Muhammad Khan ◽  
Jianming Xu ◽  
Muhammad Faiz ◽  
Yaqoob Ali ◽  
...  

This paper presents a comparative analysis of a new topology based on an asymmetric hybrid modular multilevel converter (AHMMC) with recently proposed multilevel converter topologies. The analysis is based on various parameters for medium voltage-high power electric traction system. Among recently proposed topologies, few converters have been analysed through simulation results. In addition, the study investigates AHMMC converter which is a cascade arrangement of H-bridge with five-level cascaded converter module (FCCM) in more detail. The key features of the proposed AHMMC includes: reduced switch losses by minimizing the switching frequency as well as the components count, and improved power factor with minimum harmonic distortion. Extensive simulation results and low voltage laboratory prototype validates the working principle of the proposed converter topology. Furthermore, the paper concludes with the comparison factors evaluation of the discussed converter topologies for medium voltage traction applications.


Author(s):  
W. Margaret Amutha ◽  
H. Caleb Andrew ◽  
A. Debie Shajie ◽  
J. Praveen Immanuel Paulraj

<span>To power remote area telecom where grid supplied electricity is unreliable, an alternative exists in the form of renewable energy sources. These sources mainly rely on the weather condition of a particular area for their source of power. To overcome such problem, hybridization of energy sources are prefered. Hybridization of solar-wind systems use a separate converter for each source thus leading to a complex, bulky and less efficient system. This paper presents a single renewable power interface which allows solar and wind  sources to supply the load separately or simultaneously depending on the availability of the energy sources. It uses cuk and sepic converter topologies to form cuk-seic interfece. These systems  also use battery backup to store excess energy and to make best use of their operating characteristics. Performance comparison between a cuk-sepic renewable power interface with and without MPPT using MATLAB/SIMULINK is presented. A detailed componentwise analysis is also done to calculate best efficient interface. It is found that the cuk-sepic interface with MPPT is efficient. A lab level model for cuk-sepic interface is developed and tested. The experimental results proved the effective operation of a single renewable power cuk-sepic interface with MPPT. </span>


Sign in / Sign up

Export Citation Format

Share Document