scholarly journals Development of a fuel consumption measurement methodology for light duty vehicles in Colombia, based on metrology principles

DYNA ◽  
2020 ◽  
Vol 87 (212) ◽  
pp. 47-56
Author(s):  
Juan Carlos Castillo Herrera ◽  
Juan Camilo López Restrepo ◽  
David Andrés Serrato Tobón ◽  
Juan Esteban Tibaquirá Giraldo ◽  
Sergio Andrés Carvajal Perdomo

In this study, a methodology to measure fuel consumption for light duty vehicles (LDV) in Colombia was elaborated based on existing methodologies from road transportation worldwide. This methodology was proposed as a tool for the evaluation of energy efficiency strategies applied to vehicles, as well as establishing the baseline for measurement, control, and regulation of consumption of fossil fuels based on metrological criteria. Additionally, the capacities for measurement within Colombia were analyzed, and procedures stated by the Code of Federal Regulations of the United States of America were adopted for measuring fuel consumption of LDV by gravimetric methods. An uncertainty model based on the Guide to the expression of Uncertainty in Measurement (GUM) was elaborated, and the contribution of different variables associated to the measurement process the instruments, the equipment, and the ambient conditions over the uncertainty of the measurand, were analyzed.

Author(s):  
Kevin Laboe ◽  
Marcello Canova

Up to 65% of the energy produced in an internal combustion engine is dissipated to the engine cooling circuit and exhaust gases [1]. Therefore, recovering a portion of this heat energy is a highly effective solution to improve engine and drivetrain efficiency and to reduce CO2 emissions, with existing vehicle and powertrain technologies [2,3]. This paper details a practical approach to the utilization of powertrain waste heat for light vehicle engines to reduce fuel consumption. The “Systems Approach” as described in this paper recovers useful energy from what would otherwise be heat energy wasted into the environment, and effectively distributes this energy to the transmission and engine oils thus reducing the oil viscosities. The focus is on how to effectively distribute the available powertrain heat energy to optimize drivetrain efficiency for light duty vehicles, minimizing fuel consumption during various drive cycles. To accomplish this, it is necessary to identify the available powertrain heat energy during any drive cycle and cold start conditions, and to distribute this energy in such a way to maximize the overall efficiency of the drivetrain.


Author(s):  
Jakub Lasocki

The World-wide harmonised Light-duty Test Cycle (WLTC) was developed internationally for the determination of pollutant emission and fuel consumption from combustion engines of light-duty vehicles. It replaced the New European Driving Cycle (NEDC) used in the European Union (EU) for type-approval testing purposes. This paper presents an extensive comparison of the WLTC and NEDC. The main specifications of both driving cycles are provided, and their advantages and limitations are analysed. The WLTC, compared to the NEDC, is more dynamic, covers a broader spectrum of engine working states and is more realistic in simulating typical real-world driving conditions. The expected impact of the WLTC on vehicle engine performance characteristics is discussed. It is further illustrated by a case study on two light-duty vehicles tested in the WLTC and NEDC. Findings from the investigation demonstrated that the driving cycle has a strong impact on the performance characteristics of the vehicle combustion engine. For the vehicles tested, the average engine speed, engine torque and fuel flow rate measured over the WLTC are higher than those measured over the NEDC. The opposite trend is observed in terms of fuel economy (expressed in l/100 km); the first vehicle achieved a 9% reduction, while the second – a 3% increase when switching from NEDC to WLTC. Several factors potentially contributing to this discrepancy have been pointed out. The implementation of the WLTC in the EU will force vehicle manufacturers to optimise engine control strategy according to the operating range of the new driving cycle.


Author(s):  
Saeed Vasebi ◽  
Yeganeh M. Hayeri ◽  
Constantine Samaras ◽  
Chris Hendrickson

Gasoline is the main source of energy used for surface transportation in the United States. Reducing fuel consumption in light-duty vehicles can significantly reduce the transportation sector’s impact on the environment. Implementation of emerging automated technologies in vehicles could result in fuel savings. This study examines the effect of automated vehicle systems on fuel consumption using stochastic modeling. Automated vehicle systems examined in this study include warning systems such as blind spot warning, control systems such as lane keeping assistance, and information systems such as dynamic route guidance. We have estimated fuel savings associated with reduction of accident and non-accident-related congestion, aerodynamic force reduction, operation load, and traffic rebound. Results of this study show that automated technologies could reduce light-duty vehicle fuel consumption in the U.S. by 6% to 23%. This reduction could save $60 to $266 annually for the owners of vehicles equipped with automated technologies. Also, adoption of automated vehicles could benefit all road users (i.e., conventional vehicle drivers) up to $35 per vehicle annually (up to $6.2 billion per year).


Risk Analysis ◽  
2008 ◽  
Vol 28 (5) ◽  
pp. 1141-1154 ◽  
Author(s):  
Ryan Keefe ◽  
James P. Griffin ◽  
John D. Graham

Author(s):  
Nicholas Lutsey ◽  
Daniel Sperling

In the past 20 years, the acceleration performance of light-duty vehicles in the United States has improved substantially while vehicles have gotten larger and heavier. Over the same period, fuel economy, measured as miles per gallon, has not improved. These data suggest that technological innovation in vehicles is not lagging but is not being used to improve vehicle fuel economy. This paper quantifies vehicle efficiency improvements in U.S. light-duty vehicles since 1975 as they relate to fuel consumption. Energy efficiency improvements have been strongly positive and relatively constant since 1975. The rapid rise in fuel economy in the late 1970s was due to a mix of efficiency improvements and downgrading of utility in the form of reduced size, power, and elimination of accessories and amenities (such as air conditioning). In contrast, since the mid-1980s, fuel economy has remained constant while the benefits of technological innovation were used to satisfy private desires (more power, size, and amenities), instead of the public interest (reduced greenhouse gas emissions and oil imports). An important policy question is how and to what extent future efficiency innovations might be directed to the public interest.


2019 ◽  
Vol 100 ◽  
pp. 00043 ◽  
Author(s):  
Jakub Lasocki ◽  
Karol Boguszewski

From an environmental point of view, the fuel consumption of vehicles with combustion engines is directly related to the depletion of non-renewable crude oil resources and pollutant emission. The aim of this paper is to evaluate the effect of driving style on fuel consumption of light-duty vehicles. The study considered five metrics used for quantitative description of driving style: Dynamic Performance Index (DPI), Aggressiveness Factor (AF), Vehicle Aggressivity (VA), Total Aggressivity (TA), based upon the previous works of other researchers, and a newly proposed metric named Driving Style Indicator (DSI). All metrics were applied to the results of chassis dynamometer tests of two light-duty vehicles with spark-ignition and compression-ignition combustion engines. The values of metrics were plotted against corresponding values of fuel consumption to create dependences. Their analysis revealed that AF metric has strong correlation with fuel consumption, but is mathematically complex and requires numerous input data. DSI metric has simple mathematical form and is based only on the speed profile of the vehicle, and yet is characterized by a strong correlation with fuel consumption. DSI metric was further employed to investigate the influence of driving style on greenhouse gas (GHG) emissions from the Well-to-Wheel (WtW) perspective.


Sign in / Sign up

Export Citation Format

Share Document