Effects of interface bonding configuration on photoluminescence of ZnO quantum dots–SiOxNy nanocomposite films
Nanocomposite films containing ZnO quantum dots (QDs) and SiOxNy matrix were prepared by target-attached radio frequency sputtering. Photoluminescence (PL) dominated by violet and blue emissions was observed from all ZnO QD–SiOxNy nanocomposite films with dot diameters ranging from 2.77 to 6.65 nm. X-ray photoemission spectroscopy (XPS) revealed the formation of nitrogen-correlated bonding configurations in both the SiOxNy matrix and the dot/matrix interfaces. The nitrogen-correlated configuration at the interface produced a substantial polarization effect at dot surface. The suppression of green-yellow emission observed in photoluminescence spectra of all samples was ascribed to the hole-trapping process promoted by the enhancement of the surface polarization.