scholarly journals Synthesis and Characterization of Boron-Doped Single Crystal Diamond

2013 ◽  
Vol 1519 ◽  
Author(s):  
Sunil K. Karna ◽  
D. V. Martyshkin ◽  
Yogesh K. Vohra ◽  
Samuel T. Weir

ABSTRACTThe boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) oriented Type Ib diamond substrates using a Microwave Plasma Chemical Vapor Deposition (MPCVD) technique. Raman spectrum showed a few additional bands at the lower wavenumber regions along with the zone center optical phonon mode for diamond. The change in the peak profile of the zone center optical phonon mode and its downshift were observed with the increasing boron content in the film. A modification in surface morphology of the film with increasing boron content had been observed by atomic force microscopy. Four point probe electrical measurement indicated that different conduction mechanisms are operating in various temperature regions for these semiconducting films.

CrystEngComm ◽  
2022 ◽  
Author(s):  
Wei Cao ◽  
Zhibin Ma ◽  
Hongyang Zhao ◽  
Deng Gao ◽  
Qiuming Fu

On a semi-open holder, the homoepitaxial lateral growth of single-crystal diamond (SCD) was carried out via microwave plasma chemical vapor deposition (MPCVD). By tuning and optimizing two different structures of...


2015 ◽  
Vol 1734 ◽  
Author(s):  
Samuel L. Moore ◽  
Yogesh K. Vohra

ABSTRACTChemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. Altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.


2006 ◽  
Vol 15 (2-3) ◽  
pp. 304-308 ◽  
Author(s):  
Pawan K. Tyagi ◽  
Abha Misra ◽  
K.N. Narayanan Unni ◽  
Padmnabh Rai ◽  
Manoj K. Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document