Nanoclay-reinforced Polyacrylamide Composite: Synthesis, Structural and Mechanical Characterization

2009 ◽  
Vol 1239 ◽  
Author(s):  
Yong Sun ◽  
Zaiwang Huang ◽  
Xiaodong Li

AbstractA facile electrophoretic deposition method was successfully applied to achieve novel nanoclay-reinforced polyacrylamide nanocomposite thin films. A special curled architecture of the re-aggregated nanoclay-platelets was identified, providing a possible source for realizing the interlocking mechanism in the nanocomposites. The curled architecture could be the result from strain releasing when the thin films were peeled off from the substrates. Through micro-/nano-indentation and in situ observation of the deformation during tensile test with an atomic force microscope (AFM), the localized deformation mechanism of the synthesized materials was investigated in further details. The results implied that a localized crack diversion mechanism worked in the synthesized nanocomposite thin films, which resembled its nature counterpart-nacre. The deformation behavior and fracture mechanism were discussed with reference to lamellar structure, interfacial strength between the nanoclays and the polyacrylamide matrix, and nanoclay agglomeration.

1999 ◽  
Vol 353 (1-2) ◽  
pp. 194-200 ◽  
Author(s):  
C. Coupeau ◽  
J.F. Naud ◽  
F. Cleymand ◽  
P. Goudeau ◽  
J. Grilhé

2006 ◽  
Vol 21 (2) ◽  
pp. 505-511 ◽  
Author(s):  
Lili Hu ◽  
Junlan Wang ◽  
Zijian Li ◽  
Shuang Li ◽  
Yushan Yan

Nanoporous silica zeolite thin films are promising candidates for future generation low-dielectric constant (low-k) materials. During the integration with metal interconnects, residual stresses resulting from the packaging processes may cause the low-k thin films to fracture or delaminate from the substrates. To achieve high-quality low-k zeolite thin films, it is important to carefully evaluate their adhesion performance. In this paper, a previously reported laser spallation technique is modified to investigate the interfacial adhesion of zeolite thin film-Si substrate interfaces fabricated using three different methods: spin-on, seeded growth, and in situ growth. The experimental results reported here show that seeded growth generates films with the highest measured adhesion strength (801 ± 68 MPa), followed by the in situ growth (324 ± 17 MPa), then by the spin-on (111 ± 29 MPa). The influence of the deposition method on film–substrate adhesion is discussed. This is the first time that the interfacial strength of zeolite thin films-Si substrates has been quantitatively evaluated. This paper is of great significance for the future applications of low-k zeolite thin film materials.


2020 ◽  
Vol 2 ◽  
Author(s):  
Indra Sulania ◽  
R. Blessy Pricilla ◽  
G. B. V. S. Lakshmi

Nanocomposite materials are multi-phase materials, usually solids, which have two or more component materials having different chemical and physical properties. When blended together, a newer material is formed with distinctive properties which make them an eligible candidate for many important applications. In the present study, thin films of nafion (polymer) and hematite or α-Fe2O3 (nanoparticles) nanocomposite is fabricated on indium tin oxide (ITO) coated glass substrates, due to its enhanced ionic conductivity, for cholesterol biosensor applications. Scanning electron microscopy and Atomic force microscopy revealed the formation of nanorod structured α-Fe2O3 in the films. The cyclic voltammetry (CV) studies of nafion-α-Fe2O3/ITO revealed the redox properties of the nanocomposites. The sensing studies were performed on nafion-α-Fe2O3/CHOx/ITO bioelectrode using differential pulse voltammetry (DPV) at various concentrations of cholesterol. The enzyme immobilization leaded to the selective detection of cholesterol with a sensitivity of 64.93 × 10−2 μA (mg/dl)−1 cm−2. The enzyme substrate interaction (Michaelis–Menten) constant Km, was obtained to be 19 mg/dl.


2012 ◽  
Vol 405 (5) ◽  
pp. 1463-1478 ◽  
Author(s):  
Daniele Passeri ◽  
Marco Rossi ◽  
Emanuela Tamburri ◽  
Maria Letizia Terranova

1996 ◽  
Vol 436 ◽  
Author(s):  
T. W. Scharf ◽  
R. B. Inturi ◽  
J. A. Barnard

AbstractD.C. magnetron sputtering from a CVD β-SiC target has been utilized to deposit amorphous SiC thin films on various substrates (Coming 7059 glass, unoxidized Si (111), and sapphire). The approximately 1 μm thick films were grown under various Ar sputtering pressures and flow rates. In situ annealing during deposition in vacuum and ex situ post-deposition annealing in air, both at 500°C for two hours, were implemented to determine their effects on the properties of the films. The mechanical properties were assessed via nanoindentation. An accelerated sphere-on-flat(tape) wear tester was administered to measure the wear volume losses and resultant wear rates under 0.1 and 0.2N loads, a 0.024m/s tape speed, and a 1mm ruby sphere diameter. An atomic force microscope (AFM) established the wear scar volume losses as well as the surface arithmetic roughness (RA) and root mean square roughness (RMS) of the films. The amorphous microstructure was verified by X-ray diffractometry. There was a decreasing trend in the plastic contact damage resistance, hardness, elastic modulus, and wear resistance of the films with increased amounts of Ar gas pressure; on the other hand, annealing of the lower Ar content films generated an increase in these properties compared to the as-deposited films. Atomic force microscopy revealed a more pronounced change in surface features and roughness for the in situ annealed films.


Sign in / Sign up

Export Citation Format

Share Document