scholarly journals X-Ray Microprobe for the Microcharacterization of Materials

1988 ◽  
Vol 143 ◽  
Author(s):  
C. J. Sparks ◽  
G. E. Ice

AbstractThe unique properties of X rays offer many advantages over those of electrons and other charged particles for the microcharacterization of materials. X rays are more efficient in exciting characteristic X-ray fluorescence and produce higher fluorescent signal-to-background ratios than obtained with electrons. Detectable limits for X rays are a few parts per billion which are 10−3 to 10−5 lower than for electrons. Energy deposition in the sample from X rays is 10–3 to 10–4 less than for electrons for the same detectable concentration. High-brightness storage rings, especially in the 7 GeV class with undulators, will have sources as brilliant as the most advanced electron probes. The highly collimated X-ray beams from undulators simplify the X-ray optics required to produce submicron X-ray probes with fluxes comparable to electron sources. Such X-ray microprobes will also produce unprecedentedly low levels of detection in diffraction, EXAFS, Auger, and photoelectron spectroscopies for structural and chemical characterization and elemental identification. These major improvements in microcharacterization capabilities will have wide-ranging ramifications not only in materials science but also in physics, chemistry, geochemistry, biology, and medicine.

1998 ◽  
Vol 4 (S2) ◽  
pp. 274-275
Author(s):  
E. A. Kenik ◽  
S. X. Ren

Whereas the spatial resolution for standard secondary electron (SEI) imaging in a scanning electron microscope or electron probe microanalyzer is related to the incident probe diameter, the spatial resolution for x-ray microanalysis is related to the convolution of the probe diameter with the spatial extent of the analyzed volume for a point probe. The latter is determined by electron scattering in the specimen and the subsequent emission of excited x-rays from the specimen. As such, it is possible that “What you see is not what you get”. This is especially true for instruments with high brightness electron sources (field emission). This problem is compounded by probe aberrations which at Gaussian image focus can produce significant electron tails extending tens of microns from the center of the probe.


Author(s):  
Vinayak P. Dravid ◽  
V. Ravikumar ◽  
Richard Plass

With the advent of coherent electron sources with cold field emission guns (cFEGs), it has become possible to utilize the coherent interference phenomenon and perform “practical” electron holography. Historically, holography was envisioned to extent the resolution limit by compensating coherent aberrations. Indeed such work has been done with reasonable success in a few laboratories around the world. However, it is the ability of electron holography to map electrical and magnetic fields which has caught considerable attention of materials science community.There has been considerable theoretical work on formation of space charge on surfaces and internal interfaces. In particular, formation and nature of space charge have important implications for the performance of numerous electroceramics which derive their useful properties from electrically active grain boundaries. Bonnell and coworkers, in their elegant STM experiments provided the direct evidence for GB space charge and its sign, while Chiang et al. used the indirect but powerful technique of x-ray microchemical profiling across GBs to infer the nature of space charge.


Author(s):  
R. L. Stears

Because of the nature of the bacterial endospore, little work has been done on analyzing their elemental distribution and composition in the intact, living, hydrated state. The majority of the qualitative analysis entailed intensive disruption and processing of the endospores, which effects their cellular integrity and composition.Absorption edge imaging permits elemental analysis of hydrated, unstained specimens at high resolution. By taking advantage of differential absorption of x-ray photons in regions of varying elemental composition, and using a high brightness, tuneable synchrotron source to obtain monochromatic x-rays, contact x-ray micrographs can be made of unfixed, intact endospores that reveal sites of elemental localization. This study presents new data demonstrating the application of x-ray absorption edge imaging to produce elemental information about nitrogen (N) and calcium (Ca) localization using Bacillus thuringiensis as the test specimen.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3553
Author(s):  
Dengwang Wang ◽  
Yong Gao ◽  
Sheng Wang ◽  
Jie Wang ◽  
Haipeng Li

Carbon/Phenolic (C/P), a typical anisotropic material, is an important component of aerospace and often used to protect the thermodynamic effects of strong X-ray radiation. In this paper, we establish the anisotropic elastic-plastic constitutive model, which is embedded in the in-house code “RAMA” to simulate a two-dimensional thermal shock wave induced by X-ray. Then, we compare the numerical simulation results with the thermal shock wave stress generated by the same strong current electron beam via experiment to verify the correctness of the numerical simulation. Subsequently, we discuss and analyze the rules of thermal shock wave propagation in C/P material by further numerical simulation. The results reveal that the thermal shock wave represents different shapes and mechanisms by the radiation of 1 keV and 3 keV X-rays. The vaporization recoil phenomenon appears as a compression wave under 1 keV X-ray irradiation, and X-ray penetration is caused by thermal deformation under 3 keV X-ray irradiation. The thermal shock wave propagation exhibits two-dimensional characteristics, the energy deposition of 1 keV and 3 keV both decays exponentially, the energy deposition of 1 keV-peak soft X-ray is high, and the deposition depth is shallow, while the energy deposition of 3 keV-peak hard X-ray is low, and the deposition depth is deep. RAMA can successfully realize two-dimensional orthotropic elastoplastic constitutive relation, the corresponding program was designed and checked, and the calculation results for inspection are consistent with the theory. This study has great significance in the evaluation of anisotropic material protection under the radiation of intense X-rays.


1998 ◽  
Vol 4 (S2) ◽  
pp. 378-379
Author(s):  
Z. W. Chen ◽  
D. B. Wittry

A monochromatic x-ray microprobe based on a laboratory source has recently been developed in our laboratory and used for fluorescence excitation. This technique provides high sensitivity (ppm to ppb), nondestructive, quantitative microanalysis with minimum sample preparation and does not require a high vacuum specimen chamber. It is expected that this technique (MMXRF) will have important applications in materials science, geological sciences and biological science.Three-dimensional focusing of x-rays can be obtained by using diffraction from doubly curved crystals. In our MMXRF setup, a small x-ray source was produced by the bombardment of a selected target with a focused electron beam and a toroidal mica diffractor with Johann pointfocusing geometry was used to focus characteristic x-rays from the source. In the previous work ∼ 108 photons/s were obtained in a Cu Kα probe of 75 μm × 43 μm in the specimen plane using the fifth order reflection of the (002) planes of mica.


1987 ◽  
Vol 67 (4) ◽  
pp. 1181-1192 ◽  
Author(s):  
S. C. SHEPPARD ◽  
C. L. GIBB ◽  
J. L. HAWKINS ◽  
W. R. REMPHREY

Hormesis is the stimulation of growth by very low levels of inhibitors or stressors. This phenomenon may be useful in crops where the usual cultural factors have been optimized. The literature indicates that substantial stimulation of early growth of strawberries (Fragaria × ananassa) could be achieved by exposing transplants to low doses of ionizing radiation. Experiments were conducted to test the effectiveness and reliability of X rays as a hormetic agent. Plants of a day-neutral cultivar Hecker and of a June-bearing cultivar Glooscap were irradiated at 0.5–16 Gy and planted in pots. The plants were grown outdoors and growth was recorded each week. Significant stimulation above the controls in the number of trifoliate leaves occurred in the day-neutral cultivar. This effect persisted until the first phase of fruiting. No significant stimulatory effects were observed at any time in the June-bearing cultivar. Two field trials with a June-bearing cultivar Redcoat, irradiated at doses of 0.5 and 2 Gy, also revealed no significant stimulation. The dominant factor regulating early growth was the size of the individual transplants. Therefore, although hormetic stimulation may occur, it will be difficult to quantify and optimize and it will not likely be useful for practical application.Key words: X ray, transplant, day-neutral, June-bearing


2020 ◽  
Vol 27 (5) ◽  
pp. 1447-1458 ◽  
Author(s):  
Daryl L. Howard ◽  
Martin D. de Jonge ◽  
Nader Afshar ◽  
Chris G. Ryan ◽  
Robin Kirkham ◽  
...  

The X-ray fluorescence microscopy (XFM) beamline is an in-vacuum undulator-based X-ray fluorescence (XRF) microprobe beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the 4–27 keV energy range, permitting K emission to Cd and L and M emission for all other heavier elements. With a practical low-energy detection cut-off of approximately 1.5 keV, low-Z detection is constrained to Si, with Al detectable under favourable circumstances. The beamline has two scanning stations: a Kirkpatrick–Baez mirror microprobe, which produces a focal spot of 2 µm × 2 µm FWHM, and a large-area scanning `milliprobe', which has the beam size defined by slits. Energy-dispersive detector systems include the Maia 384, Vortex-EM and Vortex-ME3 for XRF measurement, and the EIGER2 X 1 Mpixel array detector for scanning X-ray diffraction microscopy measurements. The beamline uses event-mode data acquisition that eliminates detector system time overheads, and motion control overheads are significantly reduced through the application of an efficient raster scanning algorithm. The minimal overheads, in conjunction with short dwell times per pixel, have allowed XFM to establish techniques such as full spectroscopic XANES fluorescence imaging, XRF tomography, fly scanning ptychography and high-definition XRF imaging over large areas. XFM provides diverse analysis capabilities in the fields of medicine, biology, geology, materials science and cultural heritage. This paper discusses the beamline status, scientific showcases and future upgrades.


2010 ◽  
Vol 10 (1) ◽  
pp. 67-75
Author(s):  
A. Ciaravella ◽  
D. Bongiorno ◽  
C. Cecchi-Pestellini ◽  
M.L. Testa ◽  
S. Indelicato ◽  
...  

AbstractThe X-ray emission of the young Sun was much harder and intense than today and might have played a significant role in the evolution of complex organics in protoplanetary environments. We investigate the effects of soft X-rays on tryptophan molecules in aqueous solutions at room temperature. As results of the irradiation experiments we detect several light species indicative of fragmentation, together with large molecular structures such as tryptophan dipeptide and tripeptide. Complexification is more evident in H2O solution than in D2O, probably due to isotopic effects. The abundances of peptides depend on the irradiation dose and decrease with increasing energy deposition. Radicals such as D, OD, H and OH, induced by the X-ray interaction with solvents, play a major role in determining the final products.


2020 ◽  
Vol 42 (3) ◽  
pp. 317-317
Author(s):  
Iqra Zubair Awan Iqra Zubair Awan

This review paper covers one of the most important discoveries of the last century, viz. X-ray diffraction. It has made enormous contribution to chemistry, physics, engineering, materials science, crystallography and above all medical sciences. The review covers the history of X-rays detection and production, its uses/ applications. The scientific and medical community will forever be indebted to Rand#246;ntgen for this invaluable discovery and to those who perfected its application.


1991 ◽  
Vol 35 (B) ◽  
pp. 869-882 ◽  
Author(s):  
James Castle

AbstractThis review will attempt to show how XPS now makes an important contribution to Materials Science and to highlight the developments which have brought it to this position. XPS is now a mature technique for surface analysis but it has in addition a major role as a specialised tool, being essential to studies in which derivitization methods are used to tag surface groups.The requirements of users in this field have led to the development of X-ray sources which were not envisaged in the early development of the spectroscopy. The usual sources of aluminium Kα and magnesium Kα have limitations for those elements beyond magnesium in the periodic table which would have the Is lino as the principal peak - aluminium, silicon, oulphur and phosphorus for example. Higher energy sources such as silicon Kα or zirconium and silver Lα have made it possible to utilise the Is lines up to chlorine and have the additional advantage that a strong and well resolved series of Auger lines also becomes available. The higher energy radiations are thus particularly suited to the determination of relaxation energies in materials by use of relative shifts between the photo- and Auger lines of the spectrum. Such has been the utility of such relaxation energies that use is often made of Auger lines derived from the Bremmstrahlung component of the normal x-ray sources to make a similar measurement. This measurement is used in the study of insulating ceramics in which electrostatic charging makes measurement of binding energies uncertain.Modern materials technology is particularly concerned with the manufacture of composites; particulate, fibre and laminate composites are all well known and the key to their success often lies within the interface between the phases. Transfer of load across the interface places particular requirements on adhesion at the phase boundary and an understanding of the locus of failure during destructive testing is crucial to the development of satisfactory bonding processes. In coated and laminated products there is no problem in the use of XPS, with its excellent chemical sensitivity but there is a problem of increasing magnitude in fibre and particulate composites as the substructures become finer. This stems, of course, from the difficulty of providing a focused source of X-rays of sufficient magnitude. Imaging XPS is slowly becoming a reality with several systems having a capability of 10μm now available, and one of the markets for such instruments is that of composite materials.There are important areas of Materials Science in which XPS has been displaced by other techniques such as SIMS. One such area is that of polymer surface analysis. The selectivity of XPS for substituent groups in the surface region is not good. Derivitization methods have made an impact, enabling acidic or basic groups to be determined, but SIMS, which has the ability to detach molecular clusters, has obvious advantages which will become increasingly exploited aa the problems of charging become solved. Until then however XPS will continue to find a role in polymer research and development.


Sign in / Sign up

Export Citation Format

Share Document