X-Ray Microprobe for the Microcharacterization of Materials
AbstractThe unique properties of X rays offer many advantages over those of electrons and other charged particles for the microcharacterization of materials. X rays are more efficient in exciting characteristic X-ray fluorescence and produce higher fluorescent signal-to-background ratios than obtained with electrons. Detectable limits for X rays are a few parts per billion which are 10−3 to 10−5 lower than for electrons. Energy deposition in the sample from X rays is 10–3 to 10–4 less than for electrons for the same detectable concentration. High-brightness storage rings, especially in the 7 GeV class with undulators, will have sources as brilliant as the most advanced electron probes. The highly collimated X-ray beams from undulators simplify the X-ray optics required to produce submicron X-ray probes with fluxes comparable to electron sources. Such X-ray microprobes will also produce unprecedentedly low levels of detection in diffraction, EXAFS, Auger, and photoelectron spectroscopies for structural and chemical characterization and elemental identification. These major improvements in microcharacterization capabilities will have wide-ranging ramifications not only in materials science but also in physics, chemistry, geochemistry, biology, and medicine.