Fracture Strengths of Individual Grain Boundaries in Ni3Ai Using a Miniaturized Disk Bend Test

1991 ◽  
Vol 238 ◽  
Author(s):  
Douglas E. Meyers ◽  
Alan J. Ardell

ABSTRACTThe results of our initial efforts at measuring the fracture strengths of grain boundaries In Ni3Al using a miniaturized disk-bend test are presented. The samples tested were 3 mm in diameter and between 150 and 300 μm thick. An Ingot of directlonally-solidlfled, boron-free Ni3Al containing 24% Al was annealed between 1300 and 1350 °C to induce grain growth, producing many grain boundaries In excess of 1.5 mm in length. Specimens were cut from these In such a way that one long grain boundary was located near a diameter of the specimen. The relative orientations of the grains on either side of the boundary were determined from electron channeling patterns. Low-angle boundaries are so strong they do not fracture; Instead the samples deform In a completely ductile manner. High-angle boundaries always fracture, but only after considerable plastic deformation of the two grains flanking them. Fracture is Indicated by a load drop in the load vs. displacement curves. A method involving extrapolation of the elastic portion of these curves to the displacement at fracture is used to estimate the fracture stresses. This procedure yields consistent values of the fracture strengths of high-angle boundaries. The measured stresses are large (∼2 to 3 GPa), but considerably smaller than those required for the fracture of special boundaries, as predicted by computer simulations. No correlation was found between the fracture stresses or loads and the geometry of the high-angle boundaries, many of which are close to, but deviate from, coincident site lattice orientations.

Author(s):  
David M. Bond ◽  
Mohammed A. Zikry

Evolving dislocation-density pile-ups at grain-boundaries (GBs) spanning a wide range of coincident site lattice (CSL) and random GB misorientations in face-centered cubic (fcc) bicrystals and polycrystalline aggregates has been investigated. A dislocation-density GB interaction scheme coupled to a dislocation-density-based crystalline plasticity formulation was used in a nonlinear finite element (FE) framework to understand how different GB orientations and GB-dislocation-density interactions affect local and overall behavior. An effective Burger's vector of residual dislocations was obtained for fcc bicrystals and compared with molecular dynamics (MDs) predictions of static GB energy, as well as dislocation-density transmission at GB interfaces. Dislocation-density pile-ups and accumulations of residual dislocations at GBs and triple junctions (TJs) were analyzed for a polycrystalline copper aggregate with Σ1, Σ3, Σ7, Σ13, and Σ21 CSLs and random high-angle GBs to understand and predict the effects of GB misorientation on pile-up formation and evolution. The predictions indicate that dislocation-density pile-ups occur at GBs with significantly misoriented slip systems and large residual Burger's vectors, such as Σ7, Σ13, and Σ21 CSLs and random high-angle GBs, and this resulted in heterogeneous inelastic deformations across the GB and local stress accumulations. GBs with low misorientations of slip systems had high transmission, no dislocation-density pile-ups, and lower stresses than the high-angle GBs. This investigation provides a fundamental understanding of how different representative GB orientations affect GB behavior, slip transmission, and dislocation-density pile-ups at a relevant microstructural scale.


Author(s):  
Valerie fendle ◽  
Brian Ralph

The distribution of coincident site lattice (CSL) and other geometrically special boundaries have been analysed in the form of “grain misorientation texture” (GMT) plots for several systems (pure nickel, a number of austenitic stainless steels and a complex superalloy, 1-5). Several heat treatment conditions have been investigated for each system. Principally, electron back scattering (EBS) in a scanning electron microscope has been used to collect the “microtexture” (i.e. grain specific) data which combines the considerable advantages of bulk specimen texture analysis, grain environment specification with semi-automatic operation. These data are currently being supplemented with thin foil transmission electron microscope (TEM) analyses which permit more detailed investigation of the grain boundary parameters (especially grain boundary planes).Conventional texture measurement shave akey role in assessing the overall changes which occur during thermomechanical processing. However, the very detailed orientation measurements give only a statistical picture and this means that neither the geometry of individual boundaries (the GMT) nor ary tendency for clustering of particular texture types or boundary types may be detected.


2008 ◽  
Vol 23 (2) ◽  
pp. 500-506 ◽  
Author(s):  
C.J. Boehlert ◽  
S.C. Longanbach ◽  
M. Nowell ◽  
S. Wright

In situ scanning electron microscopy was performed during elevated-temperature (⩽760 °C) tensile-creep deformation of a face-centered-cubic cobalt-based Udimet 188 alloy to characterize the deformation evolution and, in particular, the grain boundary-cracking evolution. In situ electron backscatter diffraction observations combined with in situ secondary electron imaging indicated that general high-angle grain boundaries were more susceptible to cracking than low-angle grain boundaries and coincident site-lattice boundaries. The extent of general high-angle grain-boundary cracking increased with increasing creep time. Grain-boundary cracking was also observed throughout subsurface locations as observed for postdeformed samples. The electron backscattered diffraction orientation mapping performed during in situ tensile-creep deformation proved to be a powerful means for characterizing the surface deformation evolution and in particular for quantifying the types of grain boundaries that preferentially cracked.


Author(s):  
P.J. Goodhew

This paper reports some observations on gold by TEM which imply that the dissociation of a high angle grain boundary into two lower energy boundaries may occur extensively.It is well established that grain boundaries of any desired geometry can be created in gold by the welding together of thin single crystals. The resultant thin bicrystal specimens are ideally suited for immediate examination by TEM and many aspects of grain boundary structure and behaviour in such specimens have been studied or discussed. One particularly useful specimen configuration can be achieved if the bicrystal is annealed until its boundary migrates (lowering its total area) until it is perpendicular to the surface of the thin specimen. This specimen geometry has been used to study, inter alia, the faceting of grain boundaries.During a study of the behaviour of coincidence high angle boundaries (i.e. those special boundaries whose geometry is such that a fraction 1/Σ of the lattice sites in both crystals coincide) it was noticed that the boundary under observation was no longer a single planar defect.


Author(s):  
J. W. Matthews ◽  
W. M. Stobbs

Many high-angle grain boundaries in cubic crystals are thought to be either coincidence boundaries (1) or coincidence boundaries to which grain boundary dislocations have been added (1,2). Calculations of the arrangement of atoms inside coincidence boundaries suggest that the coincidence lattice will usually not be continuous across a coincidence boundary (3). There will usually be a rigid displacement of the lattice on one side of the boundary relative to that on the other. This displacement gives rise to a stacking fault in the coincidence lattice.Recently, Pond (4) and Smith (5) have measured the lattice displacement at coincidence boundaries in aluminum. We have developed (6) an alternative to the measuring technique used by them, and have used it to find two of the three components of the displacement at {112} lateral twin boundaries in gold. This paper describes our method and presents a brief account of the results we have obtained.


Author(s):  
C. W. Price

Little evidence exists on the interaction of individual dislocations with recrystallized grain boundaries, primarily because of the severely overlapping contrast of the high dislocation density usually present during recrystallization. Interesting evidence of such interaction, Fig. 1, was discovered during examination of some old work on the hot deformation of Al-4.64 Cu. The specimen was deformed in a programmable thermomechanical instrument at 527 C and a strain rate of 25 cm/cm/s to a strain of 0.7. Static recrystallization occurred during a post anneal of 23 s also at 527 C. The figure shows evidence of dissociation of a subboundary at an intersection with a recrystallized high-angle grain boundary. At least one set of dislocations appears to be out of contrast in Fig. 1, and a grainboundary precipitate also is visible. Unfortunately, only subgrain sizes were of interest at the time the micrograph was recorded, and no attempt was made to analyze the dislocation structure.


1992 ◽  
Vol 295 ◽  
Author(s):  
Stuart Mckernan ◽  
C. Barry Carter

AbstractGeneral high-angle tilt grain boundaries may be described by an arrangement of repeating structural units. Some grain-boundary defects may also be modeled by the incorporation of structural units of related boundary structures into the boundary. The simulation of these structures requires the use of prohibitively large unit cells. The possibility of modeling these boundaries by the superposition of image simulations of the individual structural units isinvestigated.


Author(s):  
Ryo Kikuchi ◽  
Shujiro Suzuki ◽  
Ken Suzuki

Abstract Ni-based superalloys with excellent high temperature strength have been used in advanced thermal power plants. It was found that grain boundary cracking is caused in the alloy under creep-fatigue loading due to the degradation of the crystallinity of grain boundaries and the grain boundary cracking degrades the lifetime of the alloy drastically. In order to clarify the mechanism of intergranular cracking, in this research, static and dynamic strains were applied to a bicrystal structure of the alloy perpendicularly to the grain boundary using molecular dynamics analysis. In addition, the effect of the accumulation of vacancies in the area with high-density of dislocations on the strength of the bicrystal structure was analysed. It was found that the fracture mode of the bicrystal structure changed from ductile transgranular fracture to brittle intergranular one as strong functions of the combination of Schmid factor of the two grains and the density of defects around the grain boundary. The local heavy plastic deformation occurred around the grain boundary with large difference in Schmid factor between nearby grains and the diffusion of the newly grown dislocations and vacancies was suppressed by the large strain field due to the large mismatch of the crystallographic orientation between the grains. The accumulation of vacancies accelerated the local plastic deformation around the grain boundary. Therefore, the mechanism of the acceleration of intergranular cracking under creep-fatigue loading was successfully clarified by MD analysis.


Sign in / Sign up

Export Citation Format

Share Document