Friction and Wear Reduction of 440C Stainless Steel by Ion Implantation

1983 ◽  
Vol 27 ◽  
Author(s):  
L. E. Pope ◽  
F. G. Yost ◽  
D. M. Follstaedt ◽  
S.T. Picraux ◽  
J. A. Knapp

ABSTRACTFriction and wear tests on ion-implanted 440C stainless steel discs have been extended to high Hertzian stresses (≤ 3150 MPa). Implantation of 2 × 1015 Ti/mm2 (180–90 keV) and 2 × 1015 C/mm2 (30 keV) into 440C reduces friction (∼40%) and wear (> 80%) for Hertzian stresses as large as 2900 MPa, stresses which significantly exceed the yield strength of 440C (∼1840 MPa). Implantation of 4 × 1015 N/mm2 (50 keV) into 440C reduces friction slightly (∼25%) for Hertzian stresses > 1840 MPa but provides little or no reduction in wear. The amount of Ti remaining in the wear tracks correlates with the reductions in friction and wear. The implantation of Ti and C produces an amorphous surface layer which is believed to reduce friction and wear, whereas N implantation is expected to produce hard nitride particles which probably do not modify the hardness of 440C (KHN = 789) significantly.

1983 ◽  
Vol 27 ◽  
Author(s):  
D. M. Follstaedt ◽  
F. G. Yost ◽  
L.E. Pope

ABSTRACTImplantation of Ti and C into stainless steel discs of Types 304, 15–5 PH, Nitronic 60 and 440C has previously been reported to reduce wear depths by up to ∼ 85% and friction by ∼ 50% in unlubricated pin-on-disc tests. Our earlier studies relating microstructure to friction and wear results in Type 304 are first summarized; these indicate that the improvements in the surface mechanical properties are due to an amorphous surface layer, similar to the amorphous layer observed in pure Fe implanted with Ti and C. We have now examined the other three implanted steels and found similar amorphous layers. These results strongly suggest that the amorphous surface alloy is responsible for reduced friction and wear in all the steels.


2021 ◽  
pp. 1-11
Author(s):  
Oleg Tolochko ◽  
Ilya Kobykhno ◽  
Svetlana Khashirova ◽  
Azamat Zhansitov ◽  
Alexander Breki ◽  
...  

Abstract Polyetheretherketone (PEEK) is a promising polymer material for tribological applications. Friction and wear tests of PEEK samples vs. steel with different melt flow indexes (MFI) were studied. The results showed dependencies of the friction force on the sliding velocity, either decreasing or increasing depending on whether the normal load exceeds the yield strength of the polymer. The data can be well fitted with the assumption of the two-component friction law involving the Amontons component and an adhesional component. With a decrease in MFI, i.e. with an increase in viscosity of polymer. The adhesive component of friction increases with increasing viscosity while the abrasive wear decreases. At high loads, the plastic displacement increases with an increase in the viscosity and plasticity of the polymer. The wear does not show a clear correlation with the viscosity.


1983 ◽  
Vol 107 (3) ◽  
pp. 259-267 ◽  
Author(s):  
D.M. Follstaedt ◽  
L.E. Pope ◽  
J.A. Knapp ◽  
S.T. Picraux ◽  
F.G. Yost

1996 ◽  
Vol 444 ◽  
Author(s):  
S. M. Myers ◽  
D. M. Follstaedt ◽  
J. A. Knapp ◽  
T. R. Christenson

AbstractDual ion implantation of titanium and carbon was shown to produce an amorphous surface layer in annealed bulk nickel, in electroformed Ni, and in electroformed Ni7 5Fe 2 5. Diamond-tip nanoindentation coupled with finite-element modeling quantified the elastic and plastic mechanical properties of the implanted region. The amorphized matrix, with a thickness of about 100 nm, has a yield stress of approximately 6 GP and an intrinsic hardness near 16 GPa, exceeding by an order of magnitude the corresponding values for annealed bulk Ni. Implications for micro-electromechanical systems are discussed.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xincong Zhou ◽  
Chaozhen Yang ◽  
Jian Huang ◽  
Xueshen Liu ◽  
Da Zhong ◽  
...  

Purpose Ultra-high molecular weight polyethylene (UHMWPE) is adopted in water-lubricated bearings for its excellent performance. This paper aims to investigate the tribological properties of UHMWPE with a molecular weight of 10.2 million (g mol‐1) under different molding temperatures. Design/methodology/approach The UHMWPE samples were prepared by mold pressing under constant pressure and different molding temperatures (140°C, 160°C, 180°C, 200°C, 220°C). The friction and wear tests in water were conducted at the RTEC tribo-tester. Findings The friction coefficient and wear loss decreased first and rose later with the increasing molding temperature. The minimums of the friction coefficient and wear loss were found at the molding temperatures of 200°C. At low melting temperatures, the UHMWPE molecular chains could not unwrap thoroughly, leading to greater abrasive wear. On the other hand, high melting temperatures will cause the UHMWPE molecular chains to break up and decompose. The optimal molding temperatures for UHMWPE were found to be 200°C. Originality/value Findings are of great significance for the design of water-lubricated UHMWPE bearings.


2010 ◽  
Vol 150-151 ◽  
pp. 1364-1368 ◽  
Author(s):  
Tao Ding ◽  
Guang Xiong Chen ◽  
Ming Xue Shen ◽  
Min Hao Zhu ◽  
Wei Hua Zhang

Friction and wear tests of stainless steel rubbing against copper-impregnated metalized carbon with electric current were carried on the pin-on-disc tester. The result indicates that arc discharge occurs in the process of experiments, and the intensity of arc discharge of interface increases with increasing of electric current and sliding velocity. As increasing of the arc discharge intensity, friction coefficient shows a tendency of slightly increase. While the rate of copper-impregnated metalized carbon material increase significantly with the increase of arc discharge intensity. Through observing the worn surface morphology of pin samples, it is found that the abrasive wear is dominant at small arc discharge due to worn particles and arc ablation craters, but arc erosion and oxidation wear are the main wear mechanisms in condition of large arc discharge due to arc discharge and its producing high temperature. The materials transfer of contact couple occurs in the process of friction and wear.


2012 ◽  
Vol 476-478 ◽  
pp. 566-569
Author(s):  
Bao Guo Yuan ◽  
Hai Ping Yu ◽  
Ping Li ◽  
Gui Hua Xu ◽  
Chun Feng Li ◽  
...  

The effects of hydrogen on friction and wear properties of Ti–6Al–4V alloy sliding against GCr15 steel were investigated through dry sliding friction and wear tests in atmosphere at room temperature. Wear mechanism was determined by studying the morphology and chemical element of worn surface using SEM and EDS. Results show that friction coefficient decreases slightly and wear rate increases after hydrogenation. Wear mechanism is discussed.


2019 ◽  
Vol 72 (1) ◽  
pp. 172-179 ◽  
Author(s):  
Meiling Wang

Purpose The purpose of this study is to investigate the effect of engineered micro-structures on the tribological properties of metal-polyetheretherketone (PEEK) surface. Design/methodology/approach Circular dimples with diameters of 25 and 50 µm were designed and manufactured on PEEK plate specimens using picosecond laser. Reciprocating friction and wear tests on a ball-on-flat configuration were performed to evaluate the tribological properties of the designed micro-structures in dry contacts. The loading forces of 0.9 and 3 N were applied. Findings As a result, obvious fluctuations of coefficient of friction curve were observed in tribosystems consisting of non-textured and textured PEEK with circular dimples of 25 µm in diameter. GCr15 ball/textured PEEK plate specimens with circular dimples of 50 µm in diameter revealed a superior friction and wear property. Originality/value Different to the existing studies in which the tribopairs consist of hard bearing couples, this study investigated the tribological properties of the engineered micro-structures on the hard-on-soft bearing couples.


2008 ◽  
Vol 368-372 ◽  
pp. 1092-1095 ◽  
Author(s):  
Han Ning Xiao ◽  
Ji Xiang Yin ◽  
Tetsuya Senda

Friction and wear tests of Al2O3 and SiC were conducted from room temperature to 1200°C both in air and in vacuum. Results show that the wear mechanism of Al2O3 is dominated by micro fracture, debris abrasive and delamination at temperatures below 600 °C, while is controlled by plastic deformation and recrystallization among 600~1200 °C, resulting in an obvious decrease of wear loss. The wear rate and surface microstructure of SiC are closely depending on the testing temperature, atmosphere and contact pressure. Oxidation of SiC at elevated temperatures plays important role on the wear rate. Self lubrication of both Al2O3 and SiC at high temperatures was observed, which is mainly depending on the formation of a specific surface layer composed of nano-particles or very thin glassy film.


Wear ◽  
1987 ◽  
Vol 115 (1-2) ◽  
pp. 95-105 ◽  
Author(s):  
Kenneth Holmberg ◽  
Göran Wickström

Sign in / Sign up

Export Citation Format

Share Document