Solution Precipitation of CdSe Quantum Dots

1992 ◽  
Vol 283 ◽  
Author(s):  
Cherie R. Kagan ◽  
Michael J. Cima

ABSTRACTSynthesis of CdSe quantum dots with a high degree of monodispersity is achieved by nucleation from a supersaturated solution followed by growth to the desired particle size. The effects of temperature on the kinetic mechanisms of nucleation and growth were observed. A reaction vessel equipped with a low thermal mass internal heating element enabled controlled ramping of the solution temperature during the reaction. Nanocrystallite diameter is determined by the reaction time and the solution temperature during particle growth.A method was developed to fabricate ∼1μm thick glass films containing ∼3 vol% CdSe quantum dots. A sol was prepared by mixing a silica organosol with a nanocrystallite dispersion of CdSe and was applied to amorphous quartz substrates by spin-coating. The sols were dried at elevated temperatures in a nitrogen atmosphere. Optical absorbance and fluorescence measurements of the glass film were used to characterize the optical properties of the embedded nanocrystallites. Comparison of the excitonic absorbance of the quantum dot dispersion and the doped glass film shows that particle monodispersity is maintained upon incorporation into the dielectric matrix. Stokes shifts in the band-to-band fluorescence relative to the film absorbance were measured. Shifts in the wavelength of the excitonic absorbance and fluorescence were observed upon incorporation of the quantum dots into the glass film and upon heat treating the glass film to elevated temperatures.

2010 ◽  
Vol 4 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Zoltan Győri ◽  
Dávid Tátrai ◽  
Ferenc Sarlós ◽  
Gábor Szabó ◽  
Ákos Kukovecz ◽  
...  

In this paper, we report on photoluminescence decay measurements on CdSe quantum dots (QDs) as a function of size in the diameter range of 2.1 to 3.5 nm. The nanoparticles were synthesized by the kinetic growth method from CdO and elemental Se precursors. We studied the effects of growth time on the diameter, emission spectrum and the fluorescence lifetime of the synthesized QDs. The decay time measurements were performed using single shot time-resolved laser-induced fluorescence techniques using a Nd:YAG laser system. Two different decay times were measured on each CdSe sample, a fast one and a relatively slow one. The slow decay was found to be size dependent whereas the fast one was independent of the QD diameter. .


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1965 ◽  
Vol 14 (12) ◽  

Abstract Sanicro 71 is a nickel-base alloy having good resistance to stress-corrosion, oxidation and creep at elevated temperatures. It is recommended for nuclear power reactor heat exchanger tubes, aircraft turbojet engines and for equipment in the textile, plastic, and chemical industries. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-108. Producer or source: Sandvik.


Alloy Digest ◽  
1962 ◽  
Vol 11 (9) ◽  

Abstract UDIMET 520 is a nickel-base alloy recommended for applications where high strength at elevated temperatures is required. It is suitable for service at temperatures up to 1800 F. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-74. Producer or source: Special Metals Inc..


Alloy Digest ◽  
2005 ◽  
Vol 54 (12) ◽  

Abstract Wieland K-88 is a copper alloy with very high electrical and thermal conductivity, good strength, and excellent stress relaxation resistance at elevated temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CU-738. Producer or source: Wieland Metals Inc.


Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract BRUSH Alloy 3 offers the highest electrical and thermal conductivity of any beryllium-copper alloy. It possesses an excellent combination of moderate strength, good corrosion resistance and good resistance to moderately elevated temperatures. Because of its unique physical and mechanical properties, Brush Alloy 3 finds widespread use in welding applications (RWMA Class 3), current-carrying springs, switch and instrument parts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-454. Producer or source: Brush Wellman Inc..


Alloy Digest ◽  
2020 ◽  
Vol 69 (7) ◽  

Abstract Alcoa 351 SupraCast is a heat-treatable aluminum-silicon-copper alloy that also contains small amounts of magnesium, manganese, vanadium, and zirconium. It is designed for components exposed to elevated temperatures in high performance engines. This datasheet provides information on composition, physical properties, and tensile properties as well as fatigue. It also includes information on heat treating, machining, and joining. Filing Code: Al-466. Producer or source: Alcoa Corporation.


Alloy Digest ◽  
1993 ◽  
Vol 42 (10) ◽  

Abstract COPPER ALLOY NO. C11100 is commonly called anneal-resistant electrolytic copper. It offers resistance to softening at slightly elevated temperatures by the addition of cadmium, which raises the temperature at which recovery and recrystallization occur. Its fabricating characteristics are the same as alloy C10100. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: CU-590. Producer or source: Copper and copper alloy mills. See also Alloy Digest Cu-530, November 1987.


Alloy Digest ◽  
1976 ◽  
Vol 25 (12) ◽  

Abstract FEDERAL BRONZE 822 is a copper-base, high-lead bearing bronze with superior resistance to scoring and seizure beyond the endurance and danger limits of ordinary bearing bronzes. It is used in applications involving high speeds, poor lubrication, heat-generating loads, elevated temperatures, dusty and gritty surroundings, or where a liquid other than oil is used as the lubricant. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on casting, heat treating, machining, joining, and surface treatment. Filing Code: Cu-324. Producer or source: Federal Bronze Products Inc..


Sign in / Sign up

Export Citation Format

Share Document