Iron Redistribution in Aluminum Thin Films

1993 ◽  
Vol 309 ◽  
Author(s):  
David L. Barr ◽  
G.J. Gualtieri ◽  
C.B. Case ◽  
M.A. Marcus ◽  
W.L. Brown

AbstractStrongly non uniform Fe depth distributions have been observed in AI(0.13 at% Fe) thin films deposited at temperatures of 350ºC and above. The concentration of Fe is uniform in depth at a deposition temperature of 300ºC but is increasingly enhanced toward the substrate interface at 450ºC. Subsequent annealing produces only a slight redistribution of Fe. The Fe is primarily present as precipitates smaller than 100 nm. A model of grain boundary diffusion of Fe and precipitate formation and grain growth is proposed to explain the observed behavior.

2022 ◽  
Vol 207 ◽  
pp. 114302
Author(s):  
Seungjin Nam ◽  
Sang Jun Kim ◽  
Moon J. Kim ◽  
Manuel Quevedo-Lopez ◽  
Jun Yeon Hwang ◽  
...  

1999 ◽  
Vol 601 ◽  
Author(s):  
B.-N. Kim ◽  
K. Hiraga

AbstractSuperplastic tensile deformation is simulated in 2 dimensions by incorporating grain boundary diffusion and concurrent grain growth derived from static and dynamic growth mechanisms. The following relationship is found between microstructural changes and deformation behavior for constant stress conditions. Grain boundary diffusion produces an increase in the aspect ratio of the matrix grains during deformation and the increased aspect ratio causes a change in creep rate parameters: the stress exponent is decreased from the initial value of 1.0 for equiaxed grains and the grain size exponent is increased from the initial value of 3.0. Accelerated grain growth is also found by the present simulation.


1993 ◽  
Vol 313 ◽  
Author(s):  
John G. Holl-Pellerin ◽  
S.G.H. Anderson ◽  
P.S. Ho ◽  
K.R. Coffey ◽  
J.K. Howard ◽  
...  

ABSTRACTX-ray photoelectron spectroscopy (XPS) has been used to investigate grain boundary diffusion of Cu and Cr through 1000 Å thick Co films in the temperature range of 325°C to 400°C. Grain boundary diffusivities were determined by modeling the accumulation of Cu or Cr on Co surfaces as a function of time at fixed annealing temperature. The grain boundary diffusivity of Cu through Co is characterized by a diffusion coefficient, D0gb, of 2 × 104 cm2/sec and an activation energy, Ea,gb, of 2.4 eV. Similarly, Cr grain boundary diffusion through Co thin films occurs with a diffusion coefficient, Do,gb, of 6 × 10-2cm2/sec and an activation energy, Ea,gb of 1.8 eV. The Co film microstructure has been investigated before and after annealing by x-ray diffraction and transmission electron Microscopy. Extensive grain growth and texturing of the film occurred during annealing for Co deposited on a Cu underlayer. In contrast, the microstructure of Co deposited on a Cr underlayer remained relatively unchanged upon annealing. Magnetometer Measurements have shown that increased in-plane coercivity Hc, reduced remanence squareness S, and reduced coercive squareness S* result from grain boundary diffusion of Cu and Cr into the Co films.


1976 ◽  
Vol 47 (9) ◽  
pp. 3769-3775 ◽  
Author(s):  
P. H. Holloway ◽  
D. E. Amos ◽  
G. C. Nelson

Sign in / Sign up

Export Citation Format

Share Document