Manufacturability Issues for Application of Silicides In 0.25 μm CMOS Process and Beyond

1995 ◽  
Vol 402 ◽  
Author(s):  
Q. F. Wang ◽  
A. Lauwers ◽  
F. Jonckx ◽  
M. de Potter ◽  
Chun-Cho Chen ◽  
...  

AbstractKey issues associated with the self-aligned silicide technology, such as formation of silicides on narrow poly gate, shallow silicided junction formation, gate to source/drain bridging, and interface contact resistance, are discussed. The comparison of important technological aspects for TiSi2 and CoSi2 is presented. The emphasis of this work is focused on the CoSi2 salicide technology with different variations, namely conventional process, Co/Ti capping process, and Ti/Co process. Based on the experimental results, CoSi2 should be considered as an attractive alternative to TiSi2 for the applications in sub-0.25 μm ULSI integrated circuits.

1977 ◽  
Vol 5 (2) ◽  
pp. 75-82 ◽  
Author(s):  
A. Schallamach

Abstract Expressions are derived for side force and self-aligning torque of a simple tire model on wet roads with velocity-dependent friction. The results agree qualitatively with experimental results at moderate speeds. In particular, the theory correctly predicts that the self-aligning torque can become negative under easily realizable circumstances. The slip angle at which the torque reverses sign should increase with the normal load.


2019 ◽  
Vol 12 (4) ◽  
pp. 5031-5039 ◽  
Author(s):  
Jisu Jang ◽  
Yunseob Kim ◽  
Sang-Soo Chee ◽  
Hanul Kim ◽  
Dongmok Whang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1683
Author(s):  
Winai Jaikla ◽  
Fabian Khateb ◽  
Tomasz Kulej ◽  
Koson Pitaksuttayaprot

This paper proposes the simulated and experimental results of a universal filter using the voltage differencing differential difference amplifier (VDDDA). Unlike the previous complementary metal oxide semiconductor (CMOS) structures of VDDDA that is present in the literature, the present one is compact and simple, owing to the employment of the multiple-input metal oxide semiconductor (MOS) transistor technique. The presented filter employs two VDDDAs, one resistor and two grounded capacitors, and it offers low-pass: LP, band-pass: BP, band-reject: BR, high-pass: HP and all-pass: AP responses with a unity passband voltage gain. The proposed universal voltage mode filter has high input impedances and low output impedance. The natural frequency and bandwidth are orthogonally controlled by using separated transconductance without affecting the passband voltage gain. For a BP filter, the root mean square (RMS) of the equivalent output noise is 46 µV, and the third intermodulation distortion (IMD3) is −49.5 dB for an input signal with a peak-to peak of 600 mV, which results in a dynamic range (DR) of 73.2 dB. The filter was designed and simulated in the Cadence environment using a 0.18-µm CMOS process from Taiwan semiconductor manufacturing company (TSMC). In addition, the experimental results were obtained by using the available commercial components LM13700 and AD830. The simulation results are in agreement with the experimental one that confirmed the advantages of the filter.


Author(s):  
Vadim Gektin ◽  
Sai Ankireddi ◽  
Jim Jones ◽  
Stan Pecavar ◽  
Paul Hundt

Thermal Interface Materials (TIMs) are used as thermally conducting media to carry away the heat dissipated by an energy source (e.g. active circuitry on a silicon die). Thermal properties of these interface materials, specified on vendor datasheets, are obtained under conditions that rarely, if at all, represent real life environment. As such, they do not accurately portray the material thermal performance during a field operation. Furthermore, a thermal engineer has no a priori knowledge of how large, in addition to the bulk thermal resistance, the interface contact resistances are, and, hence, how much each influences the cooling strategy. In view of these issues, there exists a need for these materials/interfaces to be characterized experimentally through a series of controlled tests before starting on a thermal design. In this study we present one such characterization for a candidate thermal interface material used in an electronic cooling application. In a controlled test environment, package junction-to-case, Rjc, resistance measurements were obtained for various bondline thicknesses (BLTs) of an interface material over a range of die sizes. These measurements were then curve-fitted to obtain numerical models for the measured thermal resistance for a given die size. Based on the BLT and the associated thermal resistance, the bulk thermal conductivity of the TIM and the interface contact resistance were determined, using the approach described in the paper. The results of this study permit sensitivity analyses of BLT and its effect on thermal performance for future applications, and provide the ability to extrapolate the results obtained for the given die size to a different die size. The suggested methodology presents a readily adaptable approach for the characterization of TIMs and interface/contact resistances in the industry.


1995 ◽  
Vol 396 ◽  
Author(s):  
Shu Qin ◽  
James D. Bernstein ◽  
Chung Chan

AbstractHydrogen etching effects in plasma ion implantation (PII) doping processes alter device structure and implant dopant profile and reduce the retained implant dose. This has particular relevance to the shallow junction devices of ultra large scale integrated circuits (ULSI). Hydrogen etching of semiconductor materials including Si, poly-Si, SiO2, Al, and photoresist films have been investigated. The effects of varying different PII process parameters are presented. The experimental data show that the spontaneous etching by hydrogen radicals enhanced by ion bombardment is responsible for the etching phenomena. A computer simulation is used to predict the as-implanted impurity profile and the retained implant dose for a shallow junction doping when the etching effect is considered.


1962 ◽  
Vol 40 (4) ◽  
pp. 658-674 ◽  
Author(s):  
R. J. Gillespie ◽  
E. A. Robinson

The Raman spectra of oleums, i.e. mixtures of sulphur trioxide and sulphuric acid, have been re-examined. Similar measurements on the sulphur trioxide – deuterosulphuric acid (D2SO4) system are also reported. The experimental results and conclusions of previous similar work on oleums are discussed. By comparison of the spectra of oleums with those of the polysulphuryl halides it is shown that the polysulphuric acids H2S2O7 and H2S3O10 are present in this system. The increase in the frequency of the SO2 stretching vibrations with increasing concentration of sulphur trioxide gives evidence for the existence of higher polysulphuric acids such as H2S4O13 at high concentrations of sulphur trioxide. In relatively concentrated oleum, sulphur trioxide monomer and trimer are also present. It is shown that the self-dissociation of liquid H2S2O7 gives mainly molecular H2S2O10 and H2SO4 and not ionic species. The conclusions reached from the interpretation of the Raman spectra of the D2SO4–SO3 system are similar to those arrived at for sulphuric acid oleums. The spectra of solutions of NaHSO4 in oleums were also examined, and are discussed.


2012 ◽  
Vol 241-244 ◽  
pp. 3116-3120
Author(s):  
Xiao Mei Hu ◽  
Biao Wang

Collaborative Virtual Environment (CVE) system supports a large number of users to explore a virtual world and interact with each other through networks, so one of the key issues in the design of scalable CVE systems is the partitioning problem. Existing partitioning algorithms in CVE systems based on multiple-server architecture, in our opinion, hardly consider the communication character of virtual environment. In this paper, we propose a new partitioning method based on area of interest (AOI) model matching to improve the quality of partitioning. The experimental results show preliminarily that our partitioning approach based on AOI model matching does decrease the traffic among the servers in the system and improve the partitioning performance.


Author(s):  
Xiuhan Li ◽  
Guanghua Shu ◽  
Jinan Sao ◽  
Xiongwei Zhang

A* high Q-factor circular-section solenoid-type inductor is designed and fabricated through micro electro mechanical system (MEMS) technology. The radius of the circular-section is 100μm. Ansoft HFSS is used to design and optimize the structure parameters of the inductor. The stable inductance of 10nH and maximum Q-factor of 46 is gained at the N of 10, wire width w of 10μm, space between wires d of 15μm and the self-resonance frequency of the inductor is above 10GHz. A novel fabrication method—flip chip bonding is proposed to bond the two parts of the inductor, and the process is compatible with CMOS process.


2021 ◽  
Author(s):  
Sara Sharifian Attar

The goal of this research was to develop a capability for the electrothermal modeling of electronic circuits. The objective of the thermal modeling process was to create a model that represents the thermal behavior of the physical system. The project focuses on electrothermal analysis at devices and chip level. A novel method to perform electrothermal analysis of integrated circuits based on the relaxation approach is proposed in this research. An interface program couples a circuit simulator and a thermal simulator. The developed simulator is capable of performing both steady state and transient analaysis at devices and chip level. The proposed method was applied to perform electrothermal analysis of Silicon Bipolar Junction Transistor (BJT) to predict the temperature distribution and the device performance in a circuit. Thermal nonlinearity due to temperature-dependent material parameters in the context of thermal modeling of the device and circuit has also been considered. The DC characteristics of the device were investigated. The obtained results indicate that the operating point of the device varies while the device reaches its junction temperature. The accuracy of the electrothermal simulator has been evaluated for steady state analysis. The experimental results of a BJT amplifier were compared to the simulator results of the similar circuit. The electrothermal simulation results of BJT amplifier circuit indicate a good agreement with the available experimental results in terms of power dissipation, collector current and base-emitter voltage. The performance of the electrothermal simulator has been evaluated for tansient analysis. A current mirror circuit using Si NPN BJTs was simulated. According to the electrical simulator, the output current follows the reference current immediately. Nonetheless, the electrothermal simulator results depict that the load current has delay to reach a constant value which is not the same as the reference current, due to the influence of thermal coupling and self heating. The obtained results are in agreement with the available results in literature.


2021 ◽  
Author(s):  
Enshuai Hou ◽  
Jie zhu

Tibetan is a low-resource language. In order to alleviate the shortage of parallel corpus between Tibetan and Chinese, this paper uses two monolingual corpora and a small number of seed dictionaries to learn the semi-supervised method with seed dictionaries and self-supervised adversarial training method through the similarity calculation of word clusters in different embedded spaces and puts forward an improved self-supervised adversarial learning method of Tibetan and Chinese monolingual data alignment only. The experimental results are as follows. First, the experimental results of Tibetan syllables Chinese characters are not good, which reflects the weak semantic correlation between Tibetan syllables and Chinese characters; second, the seed dictionary of semi-supervised method made before 10 predicted word accuracy of 66.5 (Tibetan - Chinese) and 74.8 (Chinese - Tibetan) results, to improve the self-supervision methods in both language directions have reached 53.5 accuracy.


Sign in / Sign up

Export Citation Format

Share Document