scholarly journals Preparation of Multilayered Materials in Cross-Section for in-Situ Tem Tensile Deformation Studies

1997 ◽  
Vol 480 ◽  
Author(s):  
M. A. Wall ◽  
T. W. Barbee

AbstractThe success of in-situ transmission electron microscopy experimentation is often dictated by proper specimen preparation. We report here a novel technique permitting the production of crosssectioned tensile specimens of multilayered films for in-situ deformation studies. Of primary importance in the development of this technique is the production of an electron transparent microgauge section using focused ion beam technology. This micro-gauge section predetermines the position at which plastic deformation is initiated; crack nucleation, growth and failure are then subsequently observed.

1996 ◽  
Vol 439 ◽  
Author(s):  
Miyoko Tanaka ◽  
Kazuo Furuya ◽  
Tetsuya Saito

AbstractFocused ion beam (FIB) irradiation of a thin Ni2Si layer deposited on a Si substrate was carried out and studied using an in-situ transmission electron microscope (in-situ TEM). Square areas on sides of 4 by 4 and 9 by 9 μm were patterned at room temperature with a 25keV Ga+-FIB attached to the TEM. The structural changes of the films indicate a uniform milling; sputtering of the Ni2Si layer and the damage introducing to the Si substrate. Annealing at 673 K results in the change of the Ni2Si layer into an epitaxial NiSi2 layer outside the FIB irradiated area, but several precipitates appear around the treated area. Precipitates was analyzed by energy dispersive X-ray spectroscopy (EDS). Larger amount of Ni than the surrounding matrix was found in precipitates. Selected area diffraction (SAD) patterns of the precipitates and the corresponding dark field images imply the formation of a Ni rich silicide. The relation between the FIB tail and the precipitation is indicated.


Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 751 ◽  
Author(s):  
Roddatis ◽  
Lole ◽  
Jooss

The study of changes in the atomic structure of a catalyst under chemical reaction conditions is extremely important for understanding the mechanism of their operation. For in situ environmental transmission electron microscopy (ETEM) studies, this requires preparation of electron transparent ultrathin TEM lamella without surface damage. Here, thin films of Pr1-xCaxMnO3 (PCMO, x = 0.1, 0.33) and La1-xSrxMnO3 (LSMO, x = 0.4) perovskites are used to demonstrate a cross-section specimen preparation method, comprised of two steps. The first step is based on optimized focused ion beam cutting procedures using a photoresist protection layer, finally being removed by plasma-etching. The second step is applicable for materials susceptible to surface amorphization, where in situ recrystallization back to perovskite structure is achieved by using electron beam driven chemistry in gases. This requires reduction of residual water vapor in a TEM column. Depending on the gas environment, long crystalline facets having different atomic terminations and Mn-valence state, can be prepared.


2007 ◽  
Vol 1020 ◽  
Author(s):  
Debbie J Stokes ◽  
Laurent Roussel ◽  
Oliver Wilhelmi ◽  
Lucille A Giannuzzi ◽  
Dominique HW Hubert

AbstractCombined focused ion beam (FIB) and scanning electron microscopy (SEM) methods are becoming increasingly important for nano-materials applications as we continue to develop ways to exploit the complex interplay between primary ion and electron beams and the substrate, in addition to the various subtle relationships with gaseous intermediaries.We demonstrate some of the recent progress that has been made concerning FIB SEM processing of both conductive and insulating materials for state-of-the-art nanofabrication and prototyping and superior-quality specimen preparation for ultra-high resolution scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) imaging and related in situ nanoanalysis techniques.


Author(s):  
Nathan R. Velez ◽  
Frances I. Allen ◽  
Mary Ann Jones ◽  
Jenn Donohue ◽  
Wei Li ◽  
...  

Abstract A method for small-scale testing and imaging of freestanding, microtomed polymer films using a push-to-pull device is presented. Central to this method was the development of a sample preparation technique which utilized solvents at cryogenic temperatures to transfer and deposit delicate thin films onto the microfabricated push-to-pull devices. The preparation of focused ion beam (FIB)-milled tensile specimens enabled quantitative in situ TEM tensile testing, but artifacts associated with ion and electron beam irradiation motivated the development of a FIB-free specimen preparation method. The FIB-free method was enabled by the design and fabrication of oversized strain-locking push-to-pull devices. An adaptation for push-to-pull devices to be compatible with an instrumented nanoindenter expanded the testing capabilities to include in situ heating. These innovations provided quantitative mechanical testing, postmortem TEM imaging, and the ability to measure the glass transition temperature, via dynamic mechanical analysis, of freestanding polymer films. Results for each of these mentioned characterization methods are presented and discussed in terms of polymer nanomechanics. Graphic Abstract


2005 ◽  
Vol 11 (1) ◽  
pp. 66-78 ◽  
Author(s):  
Alison C. Twitchett ◽  
Rafal E. Dunin-Borkowski ◽  
Robert J. Hallifax ◽  
Ronald F. Broom ◽  
Paul A. Midgley

Off-axis electron holography is used to measure electrostatic potential profiles across a siliconp-njunction, which has been prepared for examination in the transmission electron microscope (TEM) in two different specimen geometries using focused ion beam (FIB) milling. Results are obtained both from a conventional unbiased FIB-milled sample and using a novel sample geometry that allows a reverse bias to be applied to an FIB-milled samplein situin the TEM. Computer simulations are fitted to the results to assess the effect of TEM specimen preparation on the charge density and the electrostatic potential in the thin sample.


1996 ◽  
Vol 438 ◽  
Author(s):  
Miyoko Tanaka ◽  
Kazuo Furuya ◽  
Tetsuya Saito

AbstractFocused ion beam (FIB) irradiation of a thin Ni2Si layer deposited on a Si substrate was carried out and studied using an in-situ transmission electron microscope (in-situ TEM). Square areas on sides of 4 by 4 and 9 by 9 μm were patterned at room temperature with a 25keV Ga+-FIB attached to the TEM. The structural changes of the films indicate a uniform milling; sputtering of the Ni2Si layer and the damage introducing to the Si substrate. Annealing at 673 K results in the change of the Ni2Si layer into an epitaxial NiSi2 layer outside the FIB irradiated area, but several precipitates appear around the treated area. Precipitates was analyzed by energy dispersive X-ray spectroscopy (EDS). Larger amount of Ni than the surrounding matrix was found in precipitates. Selected area diffraction (SAD) patterns of the precipitates and the corresponding dark field images imply the formation of a Ni rich silicide. The relation between the FIB tail and the precipitation is indicated.


2018 ◽  
Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
M.J. Campin ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract Transmission electron microscopy (TEM) specimens are typically prepared using the focused ion beam (FIB) due to its site specificity, and fast and accurate thinning capabilities. However, TEM and high-resolution TEM (HRTEM) analysis may be limited due to the resulting FIB-induced artifacts. This work identifies FIB artifacts and presents the use of argon ion milling for the removal of FIB-induced damage for reproducible TEM specimen preparation of current and future fin field effect transistor (FinFET) technologies. Subsequently, high-quality and electron-transparent TEM specimens of less than 20 nm are obtained.


Author(s):  
H. J. Bender ◽  
R. A. Donaton

Abstract The characteristics of an organic low-k dielectric during investigation by focused ion beam (FIB) are discussed for the different FIB application modes: cross-section imaging, specimen preparation for transmission electron microscopy, and via milling for device modification. It is shown that the material is more stable under the ion beam than under the electron beam in the scanning electron microscope (SEM) or in the transmission electron microscope (TEM). The milling of the material by H2O vapor assistance is strongly enhanced. Also by applying XeF2 etching an enhanced milling rate can be obtained so that both the polymer layer and the intermediate oxides can be etched in a single step.


Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Sign in / Sign up

Export Citation Format

Share Document