Novel Multilayer Process for CuInSe2 Thin Film Formation by Rapid Thermal Processing

1997 ◽  
Vol 485 ◽  
Author(s):  
Chih-hung Chang ◽  
Billy Stanbery ◽  
Augusto Morrone ◽  
Albert Davydov ◽  
Tim Anderson

AbstractCuInSe2 thin films have been synthesized from binary precursors by Rapid Thermal Processing (RTP) at a set-point temperature of 290°C for 70 s. With appropriate processing conditions no detrimental Cu2-xSe phase was detected in the CIS films. The novel binary precursor approach consisted of a bilayer structure of In-Se and Cu-Se compounds. This bilayer structure was deposited by migration enhanced physical vapor deposition at a low temperature (200°C) and the influence of deposition parameters on the precursor film composition was determined. The bilayer structure was then processed by RTP and characterized for constitution by X-ray diffraction and for composition by Wavelength Dispersive X-ray Spectroscopy.

2015 ◽  
Vol 86 (1) ◽  
pp. 013902 ◽  
Author(s):  
Md. Imteyaz Ahmad ◽  
Douglas G. Van Campen ◽  
Jeremy D. Fields ◽  
Jiafan Yu ◽  
Vanessa L. Pool ◽  
...  

2007 ◽  
Vol 1012 ◽  
Author(s):  
Immo Michael Kötschau ◽  
Humberto Rodriguez-Alvarez ◽  
Cornelia Streeck ◽  
Alfons Weber ◽  
Manuela Klaus ◽  
...  

AbstractThe rapid thermal processing (RTP) of Cu-rich Cu/In precursors for the synthesis of CuInS2 thin films is possible within a broad processing window regarding leading parameters like top temperature, heating rate, and Cu excess. The key reaction pathway for the CuInS2 phase formation has already been investigated by in-situ energy dispersive X-ray diffraction (EDXRD) for various precursor stoichiometries, heating rates and top temperatures at sulphur partial pressure conditions which are typical for physical vapour deposition processes. According to the phase diagrams of the binary sulphide phases, the sulfur partial pressure strongly determines the occuring crystalline phases. However, a controlled variation of the maximum sulphur partial in a typical RTP experiment has not been carried out yet. In order to study the influence of this parameter a special RTP reaction chamber was designed suitable for in-situ EDXRD experiments at the EDDI beamline at BESSY, Berlin. In a typical in-situ RTP/EDXRD experiment sulphur and a Cu/In/Mo/glass precursor are placed in an evacuated graphite reactor. The amount of sulphur determines the maximum pressure available at the top temperature of the experiment. As the RTP process proceeds a complete EDXRD spectrum is acquired every 10 seconds and thus the various stages of the reaction path and the crystalline phases can be monitored. The first experiments show already a significant change in the reaction pathway and the secondary Cu-S phases which segregate on top of the CuInS2 thin film during the reaction.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


Author(s):  
Shan-Ting Hsu ◽  
Y. Lawrence Yao

Poly(L-lactic acid) (PLLA) has been shown to have potential medical usage such as in drug delivery because it can degrade into bioabsorbable products in physiological environments, and its degradation is affected by crystallinity. In this paper, the effect of film formation method and annealing on the crystallinity of PLLA are investigated. The films are made through solvent casting and spin coating methods, and subsequent annealing is conducted. The resulting crystalline morphology, structure, conformation, and intermolecular interaction are examined using optical microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. It is observed that solvent casting produces category 1 spherulites while annealed spin coated films leads to spherulites of category 2. Distinct lamellar structures and intermolecular interactions in the two kinds of films have been shown. The results enable better understanding of the crystallinity in PLLA, which is essential for its drug delivery application.


Author(s):  
С.Н. Гарибова ◽  
А.И. Исаев ◽  
С.И. Мехтиева ◽  
С.У. Атаева ◽  
Р.И. Алекперов

Specifics of "amorphous state - crystal" phase transitions in dependence on the samples obtaining method and thermal processing, as well as changes in the structure and close range order in the arrangement of the atoms of Ge20Sb20.5Te51 chalcogenide semiconductors have been studied by the x-ray diffraction and Raman spectroscopy. It has been shown that Ge20Sb20.5Te51 films obtained by thermal evaporation on an unheated substrate are amorphous; after heat treatment at 220 and 400 °C, transform into a crystalline phase with a cubic and hexagonal structure. The chemical bonds and the main structural elements that form the matrix of the investigated objects, as well as the changes that occur in them during heat treatment, have been determined.


Author(s):  
Thierry Pauporté ◽  
Daming zheng

Nowadays, overcoming the stability issue of perovskite solar cells (PSCs) while keeping high efficiency has become an urgent need for the future of this technology. By using x-ray diffraction (XRD),...


1991 ◽  
Vol 224 ◽  
Author(s):  
A. Usami ◽  
H. Shiraki ◽  
H. Fujiwara ◽  
R. Abe ◽  
N. Osamura ◽  
...  

AbstractThe slip lines introduced in Si wafers during rapid thermal processing (RTP) were revealed with focused reflectance microwave probe (RMP) method. The signal intensity of RMP which is related to optically injected excess carrier concentration decreases at slip lines. The region in which the signal intensity decreased is in good agreement with results of X-ray topography and theoretical analysis considering thermal stress caused by temperature drop at the wafer periphery during RTP. According these results, it is considered that carrier lifetime is decreased by slip dislocations which are effective recombination centers.


2006 ◽  
Vol 129 (3) ◽  
pp. 323-326
Author(s):  
Sachin S. Kulkarni ◽  
Jyoti S. Shirolikar ◽  
Neelkanth G. Dhere

Rapid thermal processing (RTP) provides a way to rapidly heat substrates to an elevated temperature to perform relatively short duration processes, typically less than 2–3min long. RTP can be utilized to minimize the process cycle time without compromising process uniformity, thus eliminating a bottleneck in CuIn1−xGaxSe2−ySy (CIGSS) module fabrication. Some approaches have been able to realize solar cells with conversion efficiencies close or equal to those for conventionally processed solar cells with similar device structures. A RTP reactor for preparation of CIGSS thin films on 10cm×10cm substrates has been designed, assembled, and tested at the Florida Solar Energy Center’s PV Materials Lab. This paper describes the synthesis and characterization of CIGSS thin-film solar cells by the RTP technique. Materials characterization of these films was done by scanning electron microscopy, x-ray energy dispersive spectroscopy, x-ray diffraction, Auger electron spectroscopy, electron probe microanalysis, and electrical characterization was done by current–voltage measurements on soda lime glass substrates by the RTP technique. Encouraging results were obtained during the first few experimental sets, demonstrating that reasonable solar cell efficiencies (up to 9%) can be achieved with relatively shorter cycle times, lower thermal budgets, and without using toxic gases.


1998 ◽  
Vol 51 (10) ◽  
pp. 947 ◽  
Author(s):  
Nicholas J. Welham

An ilmenite (FeTiO3) concentrate has been milled with sulfur in a laboratory-scale ball mill for 100 h under a variety of conditions. X-Ray diffraction and thermal processing have shown that reaction occurs within the mill forming pyrite (FeS2) and rutile (TiO2). The reaction was of greatest extent in a mill run under 400 kPa of inert gas; some reaction occurred in a mill under 10-2 Pa, whereas little reaction was observed when either water or air was present. Annealing of the product powders showed that reaction to TiO2 and FeS2 could be achieved in a closed system after 1 h at 400C but with the evolution of SO2, whereas annealing at 800C also gave TiO2 and FeS2, but without formation of SO2 which was thought to have disproportionated to form iron sulfate(VI). Closed-tube annealing of unmilled sulfur and milled ilmenite showed the same reactions as milled powders but of much greater extent.


Author(s):  
Kyriaki Polychronopoulou ◽  
Claus Rebholz ◽  
Nicholaos G. Demas ◽  
Andreas A. Polycarpou ◽  
P. N. Gibson

Cr-N and Cu-Cr-N coatings with Cu content between 3–65 at.%, Cu/Cr ratios in the 0.04–4.5 range and 21–27 at.% N, synthesized by twin e-beam Physical Vapor Deposition (EBPVD) at 450°C, were investigated. Using X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GAXRD) and scanning electron microscopy (SEM), in combination with nanoindentation mechanical property measurements and laboratory controlled ball-on-disc sliding experiments, it is shown that Cu-Cr-N coatings with low Cu content (3 at.%) possess sufficient wear resistance for high temperature demanding tribological applications.


Sign in / Sign up

Export Citation Format

Share Document