FEM Analysis of Thermal Stresses in Advanced Electronic Packages

1998 ◽  
Vol 516 ◽  
Author(s):  
Sven Rzepka ◽  
Matt A. Korhonen ◽  
Che-Yu Li ◽  
Ekkehard Meusel

AbstractFollowing the general tendency of downsizing in microelectronic packages, the interposing layer between silicon chip and organic board is constantly reduced while the differences in thermal expansion stay constant. Consequently, thermal stresses have become the most important reliability concern in advanced packages. Finite element analysis is known as an effective way of theoretically studying the mechanical situation in multi-component systems with complex material behavior. The paper presents results of finite element simulations that provide practical guidance for design, process and material developments of chip size packaging (CSP), flip chip (FC), and direct chip attach (DCA) modules. Using realistic and efficient models, a low-cost CSP concept is assessed, the effects of underfill, underfill imperfections, and underfill defects on the reliability of FC modules are studied, and an optimum set of mechanical properties for underfill materials is proposed. Finally, reliability risk factors in DCA modules are identified and preliminary design guidelines are given.

2015 ◽  
Vol 799-800 ◽  
pp. 196-200
Author(s):  
Abhilash M. Bharadwaj ◽  
Sonny Irawan ◽  
Saravanan Karuppanan ◽  
Mohamad Zaki bin Abdullah ◽  
Ismail bin Mohd Saaid

Casing design is one of the most important parts of the well planning in the oil and gas industry. Various factors affecting the casing material needs to be considered by the drilling engineers. Wells partaking in thermal oil recovery processes undergo extreme temperature variation and this induces high thermal stresses in the casings. Therefore, forecasting the material behavior and checking for failure mechanisms becomes highly important. This paper uses Finite Element Methods to analyze the behavior two of the frequently used materials for casing - J55 and L80 steels. Modeling the casing and application of boundary conditions are performed through Ansys Workbench. Effect of steam injection pressure and temperature on the materials is presented in this work, indicating the possibilities of failure during heating cycle. The change in diameter of the casing body due to axial restriction is also presented. This paper aims to draw special attention towards the casing design in high temperature conditions of the well.


2014 ◽  
Vol 693 ◽  
pp. 293-298 ◽  
Author(s):  
Rastislav Duris

Dynamic behavior of mechanical structures results from complex interactions between applied forces and the stiffness properties of the structure. Currently, many problems of structural dynamic analysis are solved using Finite Element Method (FEM). However, in recent years, the implementation of the Fast Fourier Transform (FFT) in low cost computer-based signal analyzers has provided a powerful tool for acquisition and analysis of vibration data. This article discusses combination of two approaches to structural dynamics testing; the experimental part which is referred to as Experimental Modal Analysis (EMA), respectively the analytical part, which is realized by Finite Element Analysis (FEA). Main goal of the paper is calculation of material properties from experimentally determined modal frequencies.


2012 ◽  
Vol 482-484 ◽  
pp. 1718-1721
Author(s):  
Hai Bin Li ◽  
Yan Ping Sheng ◽  
Qian Wang

The thermal stresses at the extreme temperatures in bridge deck pavements (BDP) was analyzed in the paper. The sample bridge deck and asphalt concrete pavements were analyzed. The maximum principal and shear stresses in the BDP at the wide range of temperatures were calculated using 3D finite element method. The compared results showed a strong linear correlation between the BDP maximum principal stress and the elastic modulus. This linear relationship also existed between the shear stress and the elastic modulus. From the finite element analysis, it is found that the BDP elastic modulus affects the thermal stress more than the thickness of BDP. With the consideration of thermal stresses of BDP, the thickness of BDP from 6 to 12 cm is recommended for the BDP construction.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012013
Author(s):  
D Stefańczak ◽  
J Gajewski ◽  
M Rogala

Abstract AFO (Ankle-Foot Orthosis), which covers the ankle and foot, protects and supports the ankle joint as well as the structures around it. It contributes to the maintenance of the correct gait cycle. Owing to orthoses, the functional capacity of the body part is significantly improved, and so is the quality of life for the user. Personalized orthoses, which are adapted to the anatomy of the user, are more and more often produced by the additive methods. The use of 3D printing for the manufacturing medical devices is becoming increasingly common due to the low cost of the whole process, short production time and the possibility of the product personalization. One of the stages in manufacturing AFOs with the additive method is to create a three-dimensional model of the orthosis in CAD software. Finite element analysis was performed to assess the mechanical properties of the orthosis. The influence of geometry and the materials used were investigated with FEM analysis software. As a result of structural analysis during the design stage, the assessment of the medical device in terms of its durability and mechanical resistance without putting the user at risk is possible. On the basis of the obtained results, the structure strength was compared.


2015 ◽  
Vol 8 (6) ◽  
pp. 787-799 ◽  
Author(s):  
A. R. V. WOLENSKI ◽  
S. S. DE CASTRO ◽  
S. S. PENNA ◽  
R. L. S. PITANGUEIRA ◽  
B. V. SILVA ◽  
...  

Abstract The modeling of reinforced concrete structures has taken advantage of the increasing progress on Computational Mechanics, in such way that complex phenomena, such as cracking and crushing, creep, reinforcement yielding, steel-concrete bond loss, can be modeled in a reasonable realistic way, using the proper set of numerical and computational resources. Among several options, the ones based on the Finite Element Method (FEM) allow complex analysis simulations of reinforced concrete structures, including the interaction of different nonlinear effects. This paper deals with the nonlinear finite element analysis of the bond-slip between reinforcing steel and concrete, taking into account an experimental study previously performed. The FEM analysis presented uses a combination of resources where the material behavior of concrete is described by the Microplane Constitutive Model, and an embedded reinforcement model is used to represent steel inside the concrete and take into account the effect of bond-slip. The FEM models were created using the INSANE (INteractive Structural ANalysis Environment) computational system, open source software that has a set of FEM tools for nonlinear analysis of reinforced concrete structures. The correlations between numerical-experimentals results and several parameters validate the proposed combination of resources and identifies the significance of various effects on the response.


2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Muhammad Bilal Adeel ◽  
Muhammad Asad Jan ◽  
Muhammad Aaqib ◽  
Duhee Park

The behavior of laterally loaded pile groups is usually accessed by beam-on-nonlinear-Winkler-foundation (BNWF) approach employing various forms of empirically derived p-y curves and p-multipliers. Averaged p-multiplier for a particular pile group is termed as the group effect parameter. In practice, the p-y curve presented by the American Petroleum Institute (API) is most often utilized for piles in granular soils, although its shortcomings are recognized. In this study, we performed 3D finite element analysis to develop p-multipliers and group effect parameters for 3 × 3 to 5 × 5 vertically squared pile groups. The effect of the ratio of spacing to pile diameter (S/D), number of group piles, varying friction angle (φ), and pile fixity conditions on p-multipliers and group effect parameters are evaluated and quantified. Based on the simulation outcomes, a new functional form to calculate p-multipliers is proposed for pile groups. Extensive comparisons with the experimental measurements reveal that the calculated p-multipliers and group effect parameters are within the recorded range. Comparisons with two design guidelines which do not account for the pile fixity condition demonstrate that they overestimate the p-multipliers for fixed-head condition.


2007 ◽  
Vol 23 ◽  
pp. 229-232
Author(s):  
Liliana Sandu ◽  
Nicolae Faur ◽  
Cristina Bortun ◽  
Sorin Porojan

Several studies evaluated the removable partial dentures by the finite element analysis, but none of them evaluated thermal stresses. The purpose of the study was to explore the influence of thermal oral changes induced by hot/cold liquids and food on the circumferential cast clasps of removable partial dentures. A 3-dimensional finite element method was used to explore the temperature distribution, thermal stress and the influence of thermal changes on stresses and displacements of circumferential clasps during functions. Thermal variations induce stresses in dental clasps, high temperatures having a more aggressive effect than lower one. Cold liquids and food induce high stresses in the retentive clasp arms while hot ones in the occlusal rests of the clasps and for the back action clasp also in the minor connector. The study suggests the importance of consFigureidering thermal variations for stress analyses of the cast clasps.


Author(s):  
Jaan Taagepera ◽  
Marty Clift ◽  
D. Mike DeHart ◽  
Keneth Marden

Three vessel modifications requiring heat treatment were analyzed prior to and during a planned turnaround at a refinery. One was a thick nozzle that required weld build up. This nozzle had been in hydrogen service and required bake-out to reduce the potential for cracking during the weld build up. Finite element analysis was used to study the thermal stresses involved in the bake-out. Another heat treatment studied was a PWHT of a nozzle replacement. The heat treatment band and temperature were varied with location in order to minimize cost and reduction in remaining strength of the vessel. Again, FEA was used to provide insight into the thermal stress profiles during heat treatment. The fmal heat treatment study was for inserting a new nozzle in a 1-1/4Cr-1/2Mo reactor. While this material would ordinarily require PWHT, the alteration was proposed to be installed without PWHT. Though accepted by the Jurisdiction, this nozzle installation was ultimately cancelled.


1980 ◽  
Vol 102 (4) ◽  
pp. 430-432 ◽  
Author(s):  
R. D. Blevins

The elastic thermal stresses in a welded transition between two pipes of the same size but different alloys are explored. A stress-free temperature is postulated and the stress due to a uniform change in temperature is characterized by the maximum stress intensity in the weld. A simple expression for predicting this maximum stress intensity is developed based on the results of finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document