Experimental Studies and Molecular Dynamics Simulations of the Sliding Contact of Metallic Glass

2000 ◽  
Vol 644 ◽  
Author(s):  
Xi-Yong Fu ◽  
Michael L. Falk ◽  
David A. Rigney

AbstractTribological properties of bulk metallic glass Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 were studied experimentally using a pin/disk geometry without lubrication. Experimental observations were compared with 2D molecular dynamics simulations of amorphous material in sliding contact. The friction coefficient and the wear rate of bulk metallic glass (BMG) depend on normal load and test environment. The sliding of annealed BMG re-amorphizes devitrified material. A mechanically mixed layer is generated during sliding; this layer has enhanced oxygen content if the sliding is in air. The MD simulations show that atomic scale mixing occurs across the sliding interface. The growth kinetics of the mixing process scales with the square root of time. In the simulations, a low density region is generated near the sliding interface; it corresponds spatially to the softer layer detected in experiments. Subsurface displacement profiles produced by sliding and by simulation are very similar and are consistent with the flow patterns expected from a simple Navier-Stokes analysis when the stress state involves both compression and shear.

2015 ◽  
Vol 17 (19) ◽  
pp. 12894-12898 ◽  
Author(s):  
J. K. Christie

Very accurate first-principles molecular dynamics simulations of two Mg–Zn–Ca glasses, which are candidate materials for implants, have been performed. Their structure does not strongly depend on composition, and other directions for optimisation of these glasses are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Renu Wadhwa ◽  
Neetu Singh Yadav ◽  
Shashank P. Katiyar ◽  
Tomoko Yaguchi ◽  
Chohee Lee ◽  
...  

AbstractPoor bioavailability due to the inability to cross the cell membrane is one of the major reasons for the failure of a drug in clinical trials. We have used molecular dynamics simulations to predict the membrane permeability of natural drugs—withanolides (withaferin-A and withanone) that have similar structures but remarkably differ in their cytotoxicity. We found that whereas withaferin-A, could proficiently transverse through the model membrane, withanone showed weak permeability. The free energy profiles for the interaction of withanolides with the model bilayer membrane revealed that whereas the polar head group of the membrane caused high resistance for the passage of withanone, the interior of the membrane behaves similarly for both withanolides. The solvation analysis further revealed that the high solvation of terminal O5 oxygen of withaferin-A was the major driving force for its high permeability; it interacted with the phosphate group of the membrane that led to its smooth passage across the bilayer. The computational predictions were tested by raising and recruiting unique antibodies that react to withaferin-A and withanone. The time-lapsed analyses of control and treated cells demonstrated higher permeation of withaferin-A as compared to withanone. The concurrence between the computation and experimental results thus re-emphasised the use of computational methods for predicting permeability and hence bioavailability of natural drug compounds in the drug development process.


2021 ◽  
Author(s):  
Nadire Nayir ◽  
Mert Y. Sengul ◽  
Anna L. Costine ◽  
Petra Reinke ◽  
Siavash Rajabpour ◽  
...  

2019 ◽  
Vol 21 (24) ◽  
pp. 13099-13108 ◽  
Author(s):  
Susanna Monti ◽  
Jiya Jose ◽  
Athira Sahajan ◽  
Nandakumar Kalarikkal ◽  
Sabu Thomas

Functionalized gold nanoparticles for antibiotic drug delivery: from the nanoscale to the atomic scale.


RSC Advances ◽  
2020 ◽  
Vol 10 (33) ◽  
pp. 19521-19533 ◽  
Author(s):  
Ioanna Danai Styliari ◽  
Vincenzo Taresco ◽  
Andrew Theophilus ◽  
Cameron Alexander ◽  
Martin Garnett ◽  
...  

Experimental studies of drug–polymer nanoparticle formation combined with molecular dynamics simulations provide atomistic explanations for the high drug loadings obtained.


Sign in / Sign up

Export Citation Format

Share Document