Crystalline to Amorphous Transformation of Fe3B By 1 MeV Electron Irradiation

1981 ◽  
Vol 7 ◽  
Author(s):  
A. Mogro-Campero ◽  
E.L. Hall ◽  
J.L. Walter ◽  
A.J. Ratkowski

ABSTRACTSpecimens of amorphous Fe75B25 produced by rapid quenching from the melt were annealed to complete crystallization and subjected to 1 MeV electron irradiation in a transmission electron microscope at room temperature and at 130 K. The irradiation was interrupted at various intervals in order to obtain bright field images and diffraction patterns. The Fe3B crystals did not become amorphous at room temperature, even after damage levels of several dpa, whereas at 130 K the crystalline to amorphous transformation was observed to be complete at damage levels below 1 dpa. The results are combined with those of ion irradiation work on Fe3B; qualitative agreement is found between Fe3B and previous work on the Zr3Al alloy concerning their response to displacement damage by electron and ion irradiation.

2000 ◽  
Vol 650 ◽  
Author(s):  
A. Meldrum ◽  
K. Beaty ◽  
L. A. Boatner ◽  
C. W. White

ABSTRACTIrradiation-induced amorphization of Cd2Nb2O7 pyrochlore was investigated by means of in-situ temperature-dependent ion-irradiation experiments in a transmission electron microscope, combined with ex-situ ion-implantation (at ambient temperature) and RBS/channeling analysis. The in-situ experiments were performed using Ne or Xe ions with energies of 280 and 1200 keV, respectively. For the bulk implantation experiments, the incident ion energies were 70 keV (Ne+) and 320 keV (Xe2+). The critical amorphization temperature for Cd2Nb2O7 is ∼480 K (280 keV Ne+) or ∼620 K (1200 keV Xe2+). The dose for in-situ amorphization at room temperature is 0.22 dpa for Xe2+, but is 0.65 dpa for Ne+ irradiation. Both types of experiments suggest a cascade overlap mechanism of amorphization. The results were analyzed in light of available models for the crystalline-to-amorphous transformation and were compared to previous ionirradiation experiments on other pyrochlore compositions.


Alloys of Al-5% Pb and Al-5% Pb-0.5% Si (by mass) have been manufactured by rapid solidification and then examined by transmission electron microscopy. The rapidly solidified alloy microstructures consist of 5-60 nm Pb particles embedded in an Al matrix. The Pb particles have a cube-cube orientation relation with the Al matrix, and are cub-octahedral in shape, bounded by {100} Al, Pb and {111} Al, Pb facets. The equilibrium Pb particle shape and therefore the anisotropy of solid Al-solid Pb and solid Al-liquid Pb surface energies have been monitored by in situ heating in the transmission electron microscope over the temperature range between room temperature and 550°C. The ani­sotropy of solid Al-solid Pb surface energy is constant between room temperature and the Pb melting point, with a {100} Al, Pb surface energy about 14% greater than the {111} Al, Pb surface energy, in good agreement with geometric near-neighbour bond energy calculations. The {100} AI, Pb facet disappears when the Pb particles melt, and the anisotropy of solid Al-liquid Pb surface energy decreases gradually with increasing temperature above the Pb melting point, until the Pb particles become spherical at about 550°C.


Nanoscale ◽  
2018 ◽  
Vol 10 (17) ◽  
pp. 7978-7983 ◽  
Author(s):  
Liang Cheng ◽  
Xianfang Zhu ◽  
Jiangbin Su

The coalescence of two single-crystalline Au nanoparticles on surface of amorphous SiOxnanowire, as induced by electron beam irradiation, wasin situstudied at room temperature in a transmission electron microscope.


1991 ◽  
Vol 235 ◽  
Author(s):  
R. Perez ◽  
J. Reyes-Gasga ◽  
M. Jose-Yacaman

ABSTRACTAn investigation of the phase transformations experienced by the decagonal and icosahedral phases in two different quaternary -alloys is carried out. The transformation in the decagonal phase of Al-Cu-Co-Si alloy is induced by the electron radiation in a transmission electron microscope. However, in the icosahedral phase of Al-Cu-Co-Fe alloy this transformation is induced by annealing. Electron diffraction patterns obtained from both phases suggest that the deformation mechanism involved in these kind of transitions is related with twinning


Sign in / Sign up

Export Citation Format

Share Document