Deposition and Characterization of PECVD SiOC Films by Using Bistrimethylsilylmethane (BTMSM) Precursor

2001 ◽  
Vol 714 ◽  
Author(s):  
Yoon-Hae Kim ◽  
Moo Sung Hwang ◽  
Young Lee ◽  
Hyeong Joon Kim

ABSTRACTCarbon-containing silicon oxide (SiOC) is regarded as a potential low dielectric constant (low-κ) material for an interlayer dielectric (ILD) in next generation interconnection. In this study, we present the fundamental film properties and integration process compatibility of the low-κ SiOC film deposited by using bistrimethylsilylmethane (BTMSM) precursor. As more carbon was incorporated into film, both film density and dielectric constant decreased. The lowest κ-value, which we have obtained in this study, was 2.3 and the hardness of SiOC film was 1.1GPa as well as showing the thermal stability up to 500°C. In case of using conventional gases, organic components in SiOC film restricted etch rate. However, O2 addition could make it possible to obtaine a reasonable etch rate. The post-treatment of SiOC film in hydrogen plasma improved the resistance to O2 plasma in ashing process. The compatibility of SiOC film to the CMP process was also examined.

2001 ◽  
Vol 71 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Shi-Jin Ding ◽  
Li Chen ◽  
Xin-Gong Wan ◽  
Peng-Fei Wang ◽  
Jian-Yun Zhang ◽  
...  

1999 ◽  
Vol 565 ◽  
Author(s):  
Y. Shimogaki ◽  
S. W. Lim ◽  
E. G. Loh ◽  
Y. Nakano ◽  
K. Tada ◽  
...  

AbstractLow dielectric constant F-doped silicon oxide films (SiO:F) can be prepared by adding fluorine source, like as CF4 to the conventional PECVD processes. We could obtain SiO:F films with dielectric constant as low as 2.6 from the reaction mixture of SiH4/N2 O/CF4. The structural changes of the oxides were sensitively detected by Raman spectroscopy. The three-fold ring and network structure of the silicon oxides were selectively decreased by adding fluorine into the film. These structural changes contribute to the decrease ionic polarization of the film, but it was not the major factor for the low dielectric constant. The addition of fluorine was very effective to eliminate the Si-OH in the film and the disappearance of the Si-OH was the key factor to obtain low dielectric constant. A kinetic analysis of the process was also performed to investigate the reaction mechanism. We focused on the effect of gas flow rate, i.e. the residence time of the precursors in the reactor, on growth rate and step coverage of SiO:F films. It revealed that there exists two species to form SiO:F films. One is the reactive species which contributes to increase the growth rate and the other one is the less reactive species which contributes to have uniform step coverage. The same approach was made on the PECVD process to produce low-k C:F films from C2F4, and we found ionic species is the main precursor to form C:F films.


2007 ◽  
Vol 50 (6) ◽  
pp. 1803 ◽  
Author(s):  
Rangaswamy Navamathavan ◽  
An Soo Jung ◽  
Hyun Seung Kim ◽  
Young Jun Jang ◽  
Chi Kyu Choi ◽  
...  

2014 ◽  
Vol 2 (19) ◽  
pp. 3762-3768 ◽  
Author(s):  
Muhammad Usman ◽  
Cheng-Hua Lee ◽  
Dung-Shing Hung ◽  
Shang-Fan Lee ◽  
Chih-Chieh Wang ◽  
...  

A Sr-based metal–organic framework exhibits an intrinsic low dielectric constant after removing the water molecules. A low dielectric constant and high thermal stability make this compound a candidate for use as a low-k material.


2013 ◽  
Vol 1561 ◽  
Author(s):  
M.A Jithin ◽  
Lakshmi Ganapathi Kolla ◽  
Navakanta Bhat ◽  
S. Mohan ◽  
Yuichiro Morozumi ◽  
...  

ABSTRACTIn this study, synthesis and characterization of rutile-Titanium dioxide (TiO2) thin films using pulsed DC Magnetron Sputtering at room temperature, along with the fabrication and characterization of MIM capacitors have been discussed. XPS and RBS data show that the films are stoichiometric and have compositional uniformity. The influence of electrode materials on electrical characteristics of the fabricated MIM capacitors has been studied. The Al/TiO2/Al based capacitors show low capacitance density (9 fF/μm2) with low dielectric constant (K=25) and high EOT (3.67 nm) due to low dielectric constant TiO2 phase formation on Al/Si substrate. On the other hand, Ru/TiO2/Ru based capacitors show high capacitance density (49 fF/μm2) with high dielectric constant (K=130) and low EOT (0.7nm) values at high frequency (100 KHz) due to high dielectric constant phase (rutile) formation of TiO2, on Ru/Si substrate. Raman spectra confirm that the films deposited on Ru/Si substrate show the rutile phase.


2001 ◽  
Vol 90 (7) ◽  
pp. 3367-3370 ◽  
Author(s):  
Yoon-Hae Kim ◽  
Moo Sung Hwang ◽  
Hyeong Joon Kim ◽  
Jin Yong Kim ◽  
Young Lee

Sign in / Sign up

Export Citation Format

Share Document