Indium in silicon: interactions with native defects and with C impurities

2004 ◽  
Vol 810 ◽  
Author(s):  
P. Alippi ◽  
A. La Magna ◽  
S. Scalese ◽  
V. Privitera

ABSTRACTEquilibrium geometries and formation energies of neutral and charged In complexes with silicon native defects (vacancy (V) and self-interstitials (I)) and with C impurities are investigated within density functional theory, using the Vienna Ab-initio Simulation Package. We determine formation energies and ionization levels of different complexes and discuss the contribution of I and V to indium diffusion. We also identify the In-C defect responsible for the increased electrical activation in In+C-doped silicon samples. The ab initio energetics is then implemented in a continuum diffusion code in order to simulate the diffusion of as-implanted In profiles under different thermal treatments.

2014 ◽  
Vol 783-786 ◽  
pp. 1646-1651
Author(s):  
N. Xu ◽  
J.M. Raulot ◽  
Z.B. Li ◽  
Y.D. Zhang ◽  
J. Bai ◽  
...  

The phase stabilities and magnetic properties in Ni-Mn-Ga alloys are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the vienna ab initio simulation package. The calculated formation energies show that the tetragonal NM martensite is the most stable phase compared with the cubic austenite and the modulated monoclinic martensite for stoichiometric Ni2MnGa. The atomic magnetic moment keeps constant in austenite and NM martensite, whereas those of Ni and Mn in the modulated martensite oscillate according to the atomic position. Furthermore, The formation energies of the various compositions have been systematically calculated.


Computation ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 63 ◽  
Author(s):  
Volker Eyert ◽  
Mikael Christensen ◽  
Walter Wolf ◽  
David Reith ◽  
Alexander Mavromaras ◽  
...  

The development of density functional theory and the tremendous increase of compute power in recent decades have created a framework for the incredible success of modern computational materials engineering (CME). CME has been widely adopted in the academic world and is now established as a standard tool for industrial applications. As theory and compute resources have developed, highly efficient computer codes to solve the basic equations have been implemented and successively integrated into comprehensive computational environments leading to unprecedented increases in productivity. The MedeA software of Materials Design combines a set of comprehensive productivity tools with leading computer codes such as the Vienna Ab initio Simulation Package (VASP), LAMMPS, GIBBS and the UNiversal CLuster Expansion code (UNCLE), provides interoperability at different length and time scales. In the present review, technological applications including microelectronic materials, Li-ion batteries, disordered systems, high-throughput applications and transition-metal oxides for electronics applications are described in the context of the development of CME and with reference to the MedeA environment.


2012 ◽  
Vol 706-709 ◽  
pp. 1095-1099
Author(s):  
Sara Chentouf ◽  
Jean Marc Raulot ◽  
Hafid Aourag ◽  
Thierry Grosdidier

The formation energies of the T.M impurities Ti and Zr were calculated using DFT calculations at absolute zero and ab initio MD simulations at 300 K. We found that, with increasing temperature, Zr impurities become more stable and prefer to segregate at the interface of ∑5 (310)[001] grain boundary. In the case of Ti, the results show that it remains a stable defect when temperature increases.


1998 ◽  
Vol 510 ◽  
Author(s):  
W. Windl ◽  
A. A. Demkov

AbstractWe investigate theoretically the energetics of nitrogen impurities in β-SiC, their geometrical relaxation, and electronic properties. We find that density-functional theory is able to calculate donor-ionization energies accurately once large enough simulation cells are used. For neutral interstitial defects, we find that configurations where N is three-fold coordinated have very low formation energies and high binding energies with the involved native defects. At the same time, such configurations introduce deep levels into the gap which may result in a non-activation of the donor


2003 ◽  
Vol 68 (12) ◽  
pp. 2322-2334 ◽  
Author(s):  
Robert Vianello ◽  
Zvonimir B. Maksić

The electronic and energetic properties of thymine (1) and 2-thiothymine (2) and their neutral and positively charged radicals are considered by a combined ab initio and density functional theory approach. It is conclusively shown that ionization of 1 and 2 greatly facilitates deprotonation of the formed radical cations thus making the proton transfer between charged and neutral precursor species thermodynamically favourable. The adiabatic ionization potential of 1 and 2 are analysed. It appears that ADIP(1) is larger than ADIP(2) by 10 kcal/mol, because of greater stability of the highest occupied molecular orbital (HOMO) of the former. It is also shown beyond any doubt that the spin density in neutral and cationic radical of 2 is almost exclusively placed on the σ-3p AO of sulfur implying that these two systems represent rather rare sigma-radicals. In contrast, the spin density of radicals of 1 is distributed over their π-network.


2012 ◽  
Vol 717-720 ◽  
pp. 415-418
Author(s):  
Yoshitaka Umeno ◽  
Kuniaki Yagi ◽  
Hiroyuki Nagasawa

We carry out ab initio density functional theory calculations to investigate the fundamental mechanical properties of stacking faults in 3C-SiC, including the effect of stress and doping atoms (substitution of C by N or Si). Stress induced by stacking fault (SF) formation is quantitatively evaluated. Extrinsic SFs containing double and triple SiC layers are found to be slightly more stable than the single-layer extrinsic SF, supporting experimental observation. Effect of tensile or compressive stress on SF energies is found to be marginal. Neglecting the effect of local strain induced by doping, N doping around an SF obviously increase the SF formation energy, while SFs seem to be easily formed in Si-rich SiC.


1999 ◽  
Vol 23 (8) ◽  
pp. 502-503
Author(s):  
Branko S. Jursic

High level ab initio and density functional theory studies are performed on highly protonated methane species.


Author(s):  
Alberto Rodríguez-Fernández ◽  
Laurent Bonnet ◽  
Pascal Larrégaray ◽  
Ricardo Díez Muiño

The dissociation process of hydrogen molecules on W(110) was studied using density functional theory and classical molecular dynamics.


Sign in / Sign up

Export Citation Format

Share Document