Effects of Surface Stress on the Load-Depth Curves of Depth-Sensing Indentation

2004 ◽  
Vol 841 ◽  
Author(s):  
Q. Wang ◽  
K. Ozaki

ABSTRACTBased on the effects of residual surface stress on the unloading curves of indentation load-depth responses, an experimental scheme for determination of the residual stress by depth-sensing indentation is proposed. From the point that the elastic unloading portion of the load-depth curves can be expected to be unaffected by the residual stresses, the formula for evaluating surface stress by indentation is derived based on energy method. The proposed formula is verified by using FEM simulated indentation load-depth responses for different surface stress levels. The levels of surface stress evaluated by the proposed formula show a good agreement with the ones used as input parameters in FEM simulation.

2006 ◽  
Vol 324-325 ◽  
pp. 89-92
Author(s):  
Q. Wang ◽  
Kimihiro Ozaki

In this work, we investigated the influences of residual stress on the load shifts, irreversible work from load vs. depth curves. It is found that there are linear relationships between the level of surface residual stress, the load shifts, and the variation of irreversible work for Ni, Ti, TiFe and A316L studied in this work. From these effects of residual stresses on load versus depth curves, depth-sensing indentation can be expected as a non-destructive method for measuring the residual stresses. Using the simulation results, the stresses estimated from the relationship of the level of surface residual stress and the load shifts, agree well with the applied stresses during simulations.


Author(s):  
Wei Chen ◽  
L. C. Chan ◽  
T. C. Lee

This paper aims to present an optimization process for three different types of loading paths studied in the numerical simulation of tube hydroforming of diamond-shaped sheet products. These three different types of loading paths werestudied in a numerical simulation of tube hydroforming of diamond-shaped products. The loading paths by which the best final shapes were obtained in the simulation were adopted in actual processing operation. A series of experiments were conducted within the temperature range of 270±10°C. Constitutive behavior was assumed to be elasto-plastic, and the material parameters used in the simulation were obtained from corresponding literature. The designed loading ratios were incorporated into the model to obtain the corresponding hydroforming results. The simulation results are used in the experimental verification and the products were compared with the simulation results. The experimental results showed a good agreement with the predicted numerical results, indicating that FEM simulation is an effective tool in optimizing processing procedures.


1969 ◽  
Vol 62 (4) ◽  
pp. 663-670 ◽  
Author(s):  
Lars Carlborg

ABSTRACT Oestrogens administered in lower doses than necessary to induce full cornification of the mouse vagina induce mucification. It was shown previously that the degree of mucification could be estimated by quantitative determination of sialic acids. A suitable parameter for oestrogen assay was the measurement of vaginal sialic acid concentration which exhibited a clear cut dose response curve. Eleven assays of various oestrogens were performed with this method. Their estimated relative potencies were in good agreement with other routine oestrogen assays. A statistically sufficient degree of precision was found. The sensitivity was of the same order, or slightly higher, than the Allen-Doisy test.


2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


1967 ◽  
Vol 13 (6) ◽  
pp. 515-520 ◽  
Author(s):  
Genevieve Farese ◽  
Janice L Schmidt ◽  
Milton Mager

Abstract A completely automated analysis is described for the determination of serum calcium with glyoxal bis (2-hydroxyanil) solution (GBHA). The method is simple and precise, and the data obtained are in good agreement with results obtained by the manual GBHA procedure.


Author(s):  
Emre Kahramanoglu ◽  
Silvia Pennino ◽  
Huseyin Yilmaz

The hydrodynamic characteristics of the planing hulls in particular at the planing regime are completely different from the conventional hull forms and the determination of these characteristics is more complicated. In the present study, calm water hydrodynamic characteristics of planing hulls are investigated using a hybrid method. The hybrid method combines the dynamic trim and sinkage from the Zarnick approach with the Savitsky method in order to calculate the total resistance of the planing hull. Since the obtained dynamic trim and sinkage values by using the original Zarnick approach are not in good agreement with experimental data, an improvement is applied to the hybrid method using a reduction function proposed by Garme. The numerical results obtained by the hybrid and improved hybrid method are compared with each other and available experimental data. The results indicate that the improved hybrid method gives better results compared to the hybrid method, especially for the dynamic trim and resistance. Although the results have some discrepancies with experimental data in terms of resistance, trim and sinkage, the improved hybrid method becomes appealing particularly for the preliminary design stage of the planing hulls.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3567
Author(s):  
Beata Szymanska ◽  
Zenon Lukaszewski ◽  
Beata Zelazowska-Rutkowska ◽  
Kinga Hermanowicz-Szamatowicz ◽  
Ewa Gorodkiewicz

Human epididymis protein 4 (HE4) is an ovarian cancer marker. Various cut-off values of the marker in blood are recommended, depending on the method used for its determination. An alternative biosensor for HE4 determination in blood plasma has been developed. It consists of rabbit polyclonal antibody against HE4, covalently attached to a gold chip via cysteamine linker. The biosensor is used with the non-fluidic array SPRi technique. The linear range of the analytical signal response was found to be 2–120 pM, and the biosensor can be used for the determination of the HE4 marker in the plasma of both healthy subjects and ovarian cancer patients after suitable dilution with a PBS buffer. Precision (6–10%) and recovery (101.8–103.5%) were found to be acceptable, and the LOD was equal to 2 pM. The biosensor was validated by the parallel determination of a series of plasma samples from ovarian cancer patients using the Elecsys HE4 test and the developed biosensor, with a good agreement of the results (a Pearson coefficient of 0.989). An example of the diagnostic application of the developed biosensor is given—the influence of ovarian tumor resection on the level of HE4 in blood serum.


Sign in / Sign up

Export Citation Format

Share Document