In-Situ TEM Study of Plastic Stress Relaxation Mechanisms and Interface Effects in Metallic Films

2005 ◽  
Vol 875 ◽  
Author(s):  
Marc Legros ◽  
Gerhard Dehm ◽  
T. John Balk

AbstractTo investigate the origin of the high strength of thin films, in-situ cross-sectional TEM deformation experiments have been performed on several metallic films attached to rigid substrates. Thermal cycles, comparable to those performed using laser reflectometry, were applied to thin foils inside the TEM and dislocation motion was recorded dynamically on video. These observations can be directly compared to the current models of dislocation hardening in thin films. As expected, the role of interfaces is crucial, but, depending on their nature, they can attract or repel dislocations. When the film/interface holds off dislocations, experimental values of film stress match those predicted by the Nix-Freund model. In contrast, the attracting case leads to higher stresses that are not explained by this model. Two possible hardening scenarios are explored here. The first one assumes that the dislocation/interface attraction reduces dislocation mobility and thus increases the yield stress of the film. The second one focuses on the lack of dislocation nucleation processes in the case of attracting interfaces, even though a few sources have been observed in-situ.

Author(s):  
R. Hull ◽  
J.C. Bean ◽  
F. Ross

We have studied deformation mechanisms at epitaxial semiconductor interfaces, primarily in the GexSi1-x/Si and InxGa1-xAs/GaAs systems, by in-situ annealing of metastably strained films in the transmission electron microscope (TEM). This allows direct, real-time, observation and recording of dynamic strain relaxation phenomena such as misfit dislocation nucleation, propagation and interaction mechanisms. This geometry also allows considerable insight into fundamental dislocation physics, as we are able, for example, to accurately quantify dislocation propagation velocities as functions of well-defined effective stresses (in the 108 - 109 pa regime)in the epitaxial layers, and to vary dislocation structure and character by varying the orientation of the epitaxial interface. Comparison with measurements of dislocation velocities in bulk semiconductors and with models of dislocation motion via kink propagation, allows extension of existing measurements and models to the thin film, high stress regime.


Author(s):  
Martin Owusu-Mensah ◽  
Stéphanie Jublot-Leclerc ◽  
Aurélie Gentils ◽  
Cédric Baumier ◽  
Joël Ribis ◽  
...  

1993 ◽  
Vol 323 ◽  
Author(s):  
Yujing Wu ◽  
Elizabeth G. Jacobs ◽  
Cyrus Pouraghabagher ◽  
Russell F. Pinizzotto

AbstractThe formation and growth of Cu6Sn5 and Cu3Sn at the interface of Sn-Pb solder/copper substrate are factors which affect the solderability and reliability of electronic solder joints. The addition of particles such as Ni to eutectic Sn-Pb solder drastically affects the activation energies of formation for both intermetallics. This study was performed to understand the mechanisms of intermetallic formation and the effects of Ni on intermetallic growth. Cu/Sn and Cu/Sn/Ni thin films were deposited by evaporation and observed in the TEM in real time using a hot stage. The diffusion of Sn through Cu6Sn5 and Cu3Sn followed by reaction with Cu must occur for intermetallic formation and growth to take place. Ni is an effective diffusion barrier which prevents Sn from diffusing into Cu.


Author(s):  
Daniel Bufford ◽  
Douglas Stauffer ◽  
William Mook ◽  
S.A. Syed Asif ◽  
Brad Boyce ◽  
...  

2011 ◽  
Vol 17 (S2) ◽  
pp. 1362-1363
Author(s):  
P Gao ◽  
C Nelson ◽  
J Jokisaari ◽  
S Baek ◽  
C Eom ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


1996 ◽  
Vol 436 ◽  
Author(s):  
R.-M. Keller ◽  
W. Sigle ◽  
S. P. Baker ◽  
O. Kraft ◽  
E. Arzt

AbstractIn-situ transmission electron microscopy (TEM) was performed to study grain growth and dislocation motion during temperature cycles of Cu films with and without a cap layer. In addition, the substrate curvature method was employed to determine the corresponding stresstemperature curves from room temperature up to 600°C. The results of the in-situ TEM investigations provide insight into the microstructural evolution which occurs during the stress measurements. Grain growth occurred continuously throughout the first heating cycle in both cases. The evolution of dislocation structure observed in TEM supports an explanation of the stress evolution in both capped and uncapped films in terms of dislocation effects.


1994 ◽  
Vol 364 ◽  
Author(s):  
A. Korner

AbstractThe domain structure and the evolution of antiphase boundaries (APBs) have been investigated in Fe-Al by means of “in-situ” transmission electron microscopy (TEM) heating experiments. Single crystals with composition Fe22.1at%Al and Fe25.6at%Al have been used.The grown-in structure of the Fe22.1at%al single crystal is composed of DO3 ordered particles embedded in the disorderd ±-matrix. A bimodal distribution of the particles was found. Small ordered particles are in between the large precipitates which are surrounded by particle-free zones. Numerous of this large ordered precipitates contain APBs. Crossing the transition temperature to the disordered phase, the small particles dissolve into the ±-matrix and the large particles start to shrink by dissolving.The single crystal with composition Fe25.6at%Al was found to be completely DO3 ordered. The grown-in domains are separated by APBs of type a′0/2〈100〉. At temperatures far below the transition temperature to the B2 phase no significant change in the APB and domain structure has been detected. In contrast, a remarkable evolution in the APB structure has been observed approaching the transition temperature. Coarsening of the domains has been found. Furthermore, APBs of B2-type (a′0/4〈lll〉 shear) are dragged out by dislocation motion. B2- and DC3-type APBs react and junctions are formed. With increasing annealing time, the density of B2-type boundaries increases. The TEM image is dominated by B2-type boundaries linked by the D03-type boundaries. The DO3 superlattice spots are clearly excited approaching the transition temperature to B2. Above the transition temperature, the DO3 spots disappear completely and the diffraction pattern reveals B2 long range order.


1995 ◽  
Vol 404 ◽  
Author(s):  
John S. Vetrano ◽  
Steve M. Bruemmer ◽  
Ian M. Robertson

AbstractRecrystallization and grain growth studies of Al-Mg-Mn-Zr alloys have been carried out in-situ in the transmission electron microscope. Nucleation sites were primarily on large (>I μm diameter) eutectic constituent particles. The sub-micron A16Mn dispersoids were observed to be effective as nuclei if present in clusters, and were effective at retarding grain boundary migration and dislocation motion. The smaller A13Zr precipitates seemed to have little effect on nucleation and growth, but were effective in pinning dislocations. These results have been analyzed in terms of precipitate size and shape in both the as-cold-worked microstructure and during recrystallization. The implications on the microstructural refinement of these alloys for improved superplastic properties will be discussed.


2003 ◽  
Vol 795 ◽  
Author(s):  
Aaron J. Chalekian ◽  
Roxann L. Engelstad ◽  
Edward G. Lovell

ABSTRACTAccurate mechanical properties of thin films are essential for viable design and fabrication of semiconductor devices and microelectromechanical systems. Relevant properties of thin films such as intrinsic stress, biaxial modulus, and fracture strength can be significantly different than their corresponding bulk values, and much more difficult to measure. However, such data can be obtained from the pressure-deflection response of clamped freestanding membranes, i.e., the so-called pressure-bulge test. Experimental challenges include membrane leakage prevention, ensuring proper structural boundary conditions, and accurately measuring applied pressure and transverse displacements simultaneously. In addition to these issues, most previously-developed pressure-bulge instruments rely on vacuum pump loadings. Such tools are limited by the one-atmosphere differential pressure over the membrane, which is inadequate for burst testing of high-strength films. Consequently, an enhanced pressure-bulge tool has been developed and will be described in this paper. It incorporates positive pressure to overcome the one-atmosphere load limitation, improved edge constraints, and the ability to test an array of membrane windows across a single substrate.


2009 ◽  
Vol 478 (1-2) ◽  
pp. 240-245 ◽  
Author(s):  
P.Y. Li ◽  
H.M. Lu ◽  
S.C. Tang ◽  
X.K. Meng

Sign in / Sign up

Export Citation Format

Share Document