“Sounding” the System: Noise, In/Security and the Politics of Citizenship

2021 ◽  
Vol 8 (1) ◽  
pp. 51-73
Author(s):  
Sonjah N. Stanley Niaah
Keyword(s):  
2018 ◽  
pp. 51-54
Author(s):  
I. E. Arsaev ◽  
Yu. V. Vekshin ◽  
A. I. Lapshin ◽  
V. V. Mardyshkin ◽  
M. V. Sargsyan ◽  
...  

Author(s):  
Matthew B. Galles ◽  
Noah H. Schiller ◽  
Kasey A. Ackerman ◽  
Brett A. Newman

1987 ◽  
Vol 117 ◽  
pp. 490-490
Author(s):  
A. K. Drukier ◽  
K. Freese ◽  
D. N. Spergel

We consider the use of superheated superconducting colloids as detectors of weakly interacting galactic halo candidate particles (e.g. photinos, massive neutrinos, and scalar neutrinos). These low temperature detectors are sensitive to the deposition of a few hundreds of eV's. The recoil of a dark matter particle off of a superheated superconducting grain in the detector causes the grain to make a transition to the normal state. Their low energy threshold makes this class of detectors ideal for detecting massive weakly interacting halo particles.We discuss realistic models for the detector and for the galactic halo. We show that the expected count rate (≈103 count/day for scalar and massive neutrinos) exceeds the expected background by several orders of magnitude. For photinos, we expect ≈1 count/day, more than 100 times the predicted background rate. We find that if the detector temperature is maintained at 50 mK and the system noise is reduced below 5 × 10−4 flux quanta, particles with mass as low as 2 GeV can be detected. We show that the earth's motion around the Sun can produce a significant annual modulation in the signal.


2018 ◽  
Vol 173 ◽  
pp. 03073
Author(s):  
Liu Yang ◽  
Ren Qinghua ◽  
Xu Bingzheng ◽  
Li Xiazhao

In order to solve the problem that the wideband compressive sensing reconstruction algorithm cannot accurately recover the signal under the condition of blind sparsity in the low SNR environment of the transform domain communication system. This paper use band occupancy rates to estimate sparseness roughly, at the same time, use the residual ratio threshold as iteration termination condition to reduce the influence of the system noise. Therefore, an ICoSaMP(Improved Compressive Sampling Matching Pursuit) algorithm is proposed. The simulation results show that compared with CoSaMP algorithm, the ICoSaMP algorithm increases the probability of reconstruction under the same SNR environment and the same sparse degree. The mean square error under the blind sparsity is reduced.


2008 ◽  
Vol 92 (21) ◽  
pp. 212504 ◽  
Author(s):  
Jiansong Gao ◽  
Miguel Daal ◽  
John M. Martinis ◽  
Anastasios Vayonakis ◽  
Jonas Zmuidzinas ◽  
...  

2010 ◽  
Vol 58 (6) ◽  
pp. 2121-2125 ◽  
Author(s):  
Karl F Warnick ◽  
Marianna V Ivashina ◽  
Rob Maaskant ◽  
Bert Woestenburg

2001 ◽  
Vol 3 (4) ◽  
pp. 203-213 ◽  
Author(s):  
Channa Rajanayaka ◽  
Don Kulasiri

Real world groundwater aquifers are heterogeneous and system variables are not uniformly distributed across the aquifer. Therefore, in the modelling of the contaminant transport, we need to consider the uncertainty associated with the system. Unny presented a method to describe the system by stochastic differential equations and then to estimate the parameters by using the maximum likelihood approach. In this paper, this method was explored by using artificial and experimental data. First a set of data was used to explore the effect of system noise on estimated parameters. The experimental data was used to compare the estimated parameters with the calibrated results. Estimates obtained from artificial data show reasonable accuracy when the system noise is present. The accuracy of the estimates has an inverse relationship to the noise. Hydraulic conductivity estimates in a one-parameter situation give more accurate results than in a two-parameter situation. The effect of the noise on estimates of the longitudinal dispersion coefficient is less compared to the effect on hydraulic conductivity estimates. Comparison of the results of the experimental dataset shows that estimates of the longitudinal dispersion coefficient are similar to the aquifer calibrated results. However, hydraulic conductivity does not provide a similar level of accuracy. The main advantage of the estimation method presented here is its direct dependence on field observations in the presence of reasonably large noise levels.


Sign in / Sign up

Export Citation Format

Share Document