scholarly journals A DENSITY FUNCTIONAL THEORY STUDY OF ANTIOXIDANT ACTIVITY OF ISOTHIOCYANATES IN BROCCOLI SPROUTS (BRASSICA OLERACEA L.)

2018 ◽  
Vol 54 (2C) ◽  
pp. 306 ◽  
Author(s):  
Truc Xuyen Nguyen Phan

Antioxidant activity of 9 isothiocyanate derivatives (−N=C=S) extracted from Broccolisprouts (Brassica oleracea L.) has been investigated using density functional theory (DFT) –based computational methods. Through the hydrogen atom transfer (HAT) and single electrontransfer (SET) mechanisms, three thermodynamic parameters including bond dissociationenthalpy (BDE), vertical ionization energy (IE), and vertical electron affinity (EA) werecalculated in the gas phase using B3LYP/6-311++G(3df,3p)//B3LYP/6-311G(d,p) modelchemistry. As a result, the isothiocyanate (ITC) shows potential antioxidant activity via HATmechanism. The most potential antioxidant is 3-isothiocyanato pro-1-en (3ITCP) withBDE(C−H) of 72.9 kcal/mol. The SET mechanism is not dominant in case of the studied ITCs.Moreover, the radicals formed H• removal had more reactive and less stable than the intialneutral compounds with lower IE, higher EA and ω.

2021 ◽  
Author(s):  
Ning Zhang ◽  
Yilong Wu ◽  
Miao Qiao ◽  
Wenjuan Yuan ◽  
Xingyu Li ◽  
...  

Abstract Quantum-chemical calculations based on the density functional theory (DFT) at the B3LYP/6–311++G(2d,2p)//B3LYP/6–31G(d,p) level were employed to study the relationship between the antioxidant properties and chemical structures of six dendrocandin (DDCD) analogues in the gas phase and two solvents (methanol and water). The hydrogen atom transfer (HAT), electron-transfer-proton-transfer (ET-PT), and sequential proton-loss-electron-transfer (SPLET) mechanisms are explored. The highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), reactivity indices (η, μ, ω, ω+, and ω–), and molecular electrostatic potentials (MEPs) were also evaluated. The results suggest that the D ring plays an important role in mediating the antioxidant activity of DDCDs. For all the studied compounds, indicating that HAT was identified as the most favorable mechanism, whereas the SPLET mechanism was the most thermodynamically favorable pathway in polar solvents. The results of our study should aid in the development of new or modified antioxidant compounds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruby Srivastava

AbstractThe physicochemical and antioxidant properties of seven carotenoids: antheraxanthin, β-carotene, neoxanthin, peridinin, violaxanthin, xanthrophyll and zeaxanthin were studied by theoretical means. Then the Optoelectronic properties and interaction of chlorophyll-carotenoid complexes are analysed by TDDFT and IGMPLOT. Global reactivity descriptors for carotenoids and chlorophyll (Chla, Chlb) are calculated via conceptual density functional theory (CDFT). The higher HOMO–LUMO (HL) gap indicated structural stability of carotenoid, chlorophyll and chlorophyll-carotenoid complexes. The chemical hardness for carotenoids and Chlorophyll is found to be lower in the solvent medium than in the gas phase. Results showed that carotenoids can be used as good reactive nucleophile due to lower µ and ω. As proton affinities (PAs) are much lower than the bond dissociation enthalpies (BDEs), it is anticipated that direct antioxidant activity in these carotenoids is mainly due to the sequential proton loss electron transfer (SPLET) mechanism with dominant solvent effects. Also lower PAs of carotenoid suggest that antioxidant activity by the SPLET mechanism should be a result of a balance between proclivities to transfer protons. Reaction rate constant with Transition-State Theory (TST) were estimated for carotenoid-Chlorophyll complexes in gas phase. Time dependent Density Functional Theory (TDDFT) showed that all the chlorophyll (Chla, Chlb)–carotenoid complexes show absorption wavelength in the visible region. The lower S1–T1 adiabatic energy gap indicated ISC transition from S1 to T1 state.


2021 ◽  
pp. 1-12
Author(s):  
Halimeh Rajabzadeh ◽  
Ayla Sharafat ◽  
Maryam Abbasi ◽  
Maryam Eslami Gharaati ◽  
Iraj Alipourfard

Favipiravir (Fav) has become a well-known drug for medication of patients by appearance of COVID-19. Heterocyclic structure and connected peptide group could make changes for Fav yielding different features from those required features. Therefore, it is indeed a challenging task to prepare a Fav compound with specific features of desired function. In this work, existence of eight Fav structures by tautomeric formations and peptide group rotations were obtained using density functional theory (DFT) optimization calculations. Gas phase, octanol solution, and water solution were employed to show impact of solution on features of Fav besides obtaining partition coefficients (LogP) for Fav compounds. Significant impacts of solutions were seen on features of Fav with the obtained LogP order: Fav-7 >  Fav-8 >  Fav-4 >  Fav-3 >  Fav-2 >  Fav-5 >  Fav-1 >  Fav-6. As a consequence, internal changes yielded significant impacts on features of Fav affirming its carful medication of COVID-19 patients.


1999 ◽  
Vol 595 ◽  
Author(s):  
W. R. Wampler ◽  
J. C. Barbour ◽  
C. H. Seager ◽  
S. M. Myers ◽  
A. F. Wright ◽  
...  

AbstractWe have used ion channeling to examine the lattice configuration of deuterium in Mg doped GaN grown by MOCVD. The deuterium is introduced by exposure to gas phase or ECR plasmas. A density functional approach including lattice relaxation, was used to calculate total energies for various locations and charge states of hydrogen in the wurtzite Mg doped GaN lattice. Results of channeling measurements are compared with channeling simulations for hydrogen at lattice locations predicted by density functional theory.


Sign in / Sign up

Export Citation Format

Share Document