scholarly journals DYNAMIC ANALYSIS OF THE GUIDING AND SUSPENSION SYSTEM OF THE VEHICLES’ REAR AXLE IN MULTI-BODY SYSTEMS CONCEPT

Author(s):  
Alexandru Cătălin
2021 ◽  
Vol 224 ◽  
pp. 108729
Author(s):  
Shujie Zhao ◽  
Xun Meng ◽  
Huajun Li ◽  
Dejiang Li ◽  
Qiang Fu

2012 ◽  
Vol 51 ◽  
pp. 1-15 ◽  
Author(s):  
L. Sun ◽  
R. Eatock Taylor ◽  
Y.S. Choo

Author(s):  
Henry T. Wu ◽  
Neel K. Mani

Abstract Vibration normal modes and static correction modes have been previously used to model flexible bodies for dynamic analysis of mechanical systems. The efficiency and accuracy of using these modes to model a system depends on both the flexibility of each body and the applied loads. This paper develops a generalized method for the generation of a set of Ritz vectors to model flexible bodies for dynamic analysis of multi-body mechanical systems. The Ritz vectors are generated using the distribution of dynamic loading on a flexible body. Therefore they form the most efficient vector basis for the spatial distribution of the loadings. The Ritz vectors can be re-generated when the system undergoes significant changes of its configuration and the regeneration procedure is inexpensive. The combinations of vibration normal modes and the proposed Ritz vectors thus form more efficient and accurate vector bases for the modeling of flexible bodies for dynamic analysis.


2015 ◽  
Vol 75 (8) ◽  
Author(s):  
N. Ikhsan ◽  
R. Ramli ◽  
A. Alias

In this paper, the optimum setting for suspension hard points was determined from a half vehicle suspension system. These optimized values were obtained by considering the Kinematic and Compliance (K&C) effects of a verified PROTON WRM 44 P0-34 suspension model developed using MSC/ADAMS/CAR. For optimization process, multi body dynamic software, MSC/ADAMS/INSIGHT and Design of Experiment (DoE) method was employed. There were total of 60 hard points (factors) in x, y and z axis-direction for both front and rear suspension while toe, camber and caster change were selected as the objective function (responses) to be minimized. The values of 5 mm, 10 mm and 15 mm were used as relative values of factor setting to determine the factor range during optimization process. The hard point axis-direction that has the most effects on the responses was identified using the Pareto chart to optimize while the rests were eliminated. As expected result, a new set of suspension system model with a selected of Kinematic and Compliance (K&C) data set were obtained, and compared with the verified simulation data when subjected to the vertical parallel movement simulation test to determine the best setting and optimum suspension hard points configuration.  


2015 ◽  
Vol 772 ◽  
pp. 188-191
Author(s):  
L. Yang ◽  
Fan Yang ◽  
M.B. Xia

This study presents a modeling procedure and dynamic analysis for a novel hydro-pneumatic suspension system, in which the gas chamber has been integrated into the main structures. The modeling of the novel hydro-pneumatic suspension system has been established based on the mass conservation and force balance and the dimension has been obtained through a design optimization approach. The simulation results of the established model have been compared with those obtained through ADAMS, and good match can be observed.


Sign in / Sign up

Export Citation Format

Share Document