scholarly journals Study of heritability and gene action using CMS line in hybrid rice (Oryza sativa L.)

2017 ◽  
Vol 12 (2) ◽  
pp. 122-125
Author(s):  
SUJEET KUMAR ◽  
ALOK KUMAR SINGH
Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ayumu Takatsuka ◽  
Tomohiko Kazama ◽  
Kinya Toriyama

Abstract Background Cytoplasmic male sterility (CMS) is a trait associated with non-functional pollen or anthers, caused by the interaction between mitochondrial and nuclear genes. Findings A Tadukan-type CMS line (TAA) and a restorer line (TAR) were obtained by successive backcrossing between the Oryza sativa cultivars Tadukan (a cytoplasmic donor) and Taichung 65 (a recurrent pollen parent). Using Illumina HiSeq, we determined whole-genome sequences of the mitochondria of TAA and screened the mitochondrial genome for the presence of open reading frame (orf) genes specific to this genome. One of these orf genes, orf312, showed differential expression patterns in TAA and TAR anthers at the meiotic and mature stages, with transcript amounts in TAR being less than those in TAA. The orf312 gene is similar to the previously described orf288, a part of which is among the components comprising WA352, a chimeric CMS-associated gene of wild-abortive-type CMS. Conclusions The orf312 gene is a promising candidate for CMS-associated gene in TAA.


Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Lal Bux ◽  
Dalu Li ◽  
Muhammad Faheem ◽  
Nour Ali ◽  
Muzafar Hussain Sirohi ◽  
...  

The outcrossing traits in rice (Oryza sativa L.) affect the yield of hybrid seed production. Using a cytoplasmic male sterile (CMS) line with good outcrossing traits, such as short flag leaf length (FLL), narrow flag leaf width (FLW), wide flag leaf angle (FLA), and elongated panicle neck length (PNL), for hybrid rice seed production, it is possible to avoid the procedure of cutting flag leaves and make the supplementary pollination feasible by machine. In this study, a japonica restorer C-bao as the receptor parent and a primitive japonica accession Ludao as the donor parent were used to construct a chromosome segment substitution line (CSSL) population. The CSSL population was used to detect quantitative trait loci (QTLs) for the four outcrossing traits using a likelihood ratio test based on the stepwise regression (RSTEP-LRT) method. The CSSL population constructed consisted of 163 lines covering 90.7% of the donor genome. Among the seven QTLs detected in the CSSL population, four QTLs were detected in both years. qFLL-4 explained 6.70% of the two-year-averaged phenotypic variance, and the alleles from Ludao decreased FLL 5.1 cm. qFLA-1.1 and qFLA-1.2 explained 7.85% and 21.29% of the 2-year-averaged phenotypic variance respectively, and the alleles from Ludao increased FLA 17.38° and 31.50°. qPNL-8 explained 8.87% of the 2-year-averaged phenotypic variance, and the alleles from Ludao increased PNL 4.44 cm. These favorable alleles identified could be used to improve the outcrossing traits of parents for hybrid rice seed production in rice.


2011 ◽  
Vol 24 (1) ◽  
pp. 33-40
Author(s):  
M. J. Hasan ◽  
M. U. Kulsum ◽  
A. Ansari ◽  
A. K. Paul ◽  
P. L. Biswas

Inheritance of fertility restoration was studied in crosses involving ten elite restorer lines of rice viz. BR6839-41-5-1R, BR7013-62-1-1R, BR7011-37-1-2R, BR10R, BR11R, BR12R, BR13R, BR14R, BR15R and BR16R and one male sterile line Jin23A with WA sources of cytoplasmic male sterility. The segregation pattern for pollen fertility of F2 and BC1 populations of crosses involving Jin23A indicated the presence of two independent dominant fertility restoring genes. The mode of action of the two genes varied in different crosses revealing three types of interaction, i.e. epistasis with dominant gene action, epistasis with recessive gene action, and epistasis with incomplete dominance.DOI: http://dx.doi.org/10.3329/bjpbg.v24i1.16997


2019 ◽  
Vol 10 (4) ◽  
pp. 382-388
Author(s):  
Govinda Kumar ◽  
◽  
Shivasankar Acharya ◽  
S. K. Pathak ◽  
Sunil Kumar ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 58
Author(s):  
M. Asvin Kirubha ◽  
R. P. Gnanamalar ◽  
K. Thangaraj ◽  
A. Kavitha Pushpam ◽  
A. R. Priyanka

Sign in / Sign up

Export Citation Format

Share Document