scholarly journals Parametric Study of MIG Welding on Mild Steel (IS-2062 Grade A)

2021 ◽  
Vol 183 ◽  
pp. 109305
Author(s):  
Wei Zhang ◽  
Bruce Brown ◽  
David Young ◽  
Gheorghe Bota ◽  
Srdjan Nesic ◽  
...  

2019 ◽  
Author(s):  
Abdulnasser Embark Beleed ◽  
A. I. M. Shaiful ◽  
Muhamad Fahmi Mohd Roslan ◽  
M. N. B. Omar ◽  
Mazlan Mohamed

The present work analyses MIG in terms of strength and consumption of energy during joining of similar AISI 1018 Mild Steel plates. Sustainable manufacturing is the creation of various manufactured products that generally use different processes that will minimize negative impact on environment, conserve natural resources and energy, are also safe for the employees, consumers and communities as well as economically sound. Sustainable manufacturing highlights on the necessity of an energy effective process that optimize consumption of energy. AISI 1018 mild steel is extensively used in automotive industries for pins, worms, dowels gears, non-critical tool components etc. Main important output responses are Tensile Strength and energy consumption during MIG Welding Process by taking Current, Travel Speed and Voltage as effective input variables. The main objective is to optimize energy consumption as well as tensile strength also determination of main influential process parameters on energy Consumption and tensile strength by using Taguchi Method. Contour plot has been also shown.


2011 ◽  
Vol 471-472 ◽  
pp. 484-489 ◽  
Author(s):  
J. Mai Nursherida ◽  
Sahari B. Barkawi ◽  
A.A. Nuraini

The parametric study of automotive composite bumper beam subjected to frontal impact is presented and discussed in this paper. The aim of this study is to analyze the effect of steel and composite material on energy absorption of automotive front bumper beam. The front bumper beams made of e-glass/epoxy composite and carbon epoxy composite are studied and characterized by impact modeling using LS-DYNA V971, according to United States New Car Assessment Program (US-NCAP) frontal impact velocity and based on European Enhanced Vehicle-safety Committee. The most important variable of this structure are- mass, material, and Specific Energy Absorption (SEA). The results are compared with bumper beam made of mild steel. Three types of materials are used in the present study which consists of mild steel as references material, Aluminum AA5182, E-glass/epoxy composite and carbon fiber/epoxy composite with three different fiber configurations. The beams were subjected to impact loading to determine the internal energy and SEA and to reduce mass of the conventional bumper beam. The in-plane failure behaviors of the composites were evaluated by using Tsai Wu failure criterion. The results for the composite materials are compared to that of the reference material to find the best material with highest SEA. LS-DYNA Finite Element Analysis software was used. The results showed that carbon fiber/epoxy composite bumper can reduce the bumper mass and has highest value of SEA followed by glass fiber/epoxy composite.


Author(s):  
Pardon Baloyi ◽  
Stephen A. Akinlabi ◽  
Nkosinathi Madushele ◽  
Paul A. Adedeji ◽  
Sunir Hassan ◽  
...  

2014 ◽  
Vol 1036 ◽  
pp. 440-445
Author(s):  
Tomasz Węgrzyn ◽  
Jan Piwnik ◽  
Izabela Horzela ◽  
Wojciech Majewski

The article focuses on mild steel welding and covers the new possibilities of that method. Since 2011 innovate welding technology based on micro-jet cooling just after welding is being checked. Weld metal deposit (WMD) was carried out for standard MIG welding and for new welding method with micro-jet cooling. A very high percentage of acicular ferrite (AF) in WMD was gettable (55-75%) for low alloy welding with micro-jet cooling injector. This beneficial structure (very high amount of AF) is unusual to observe in WMD in other welding methods. This method is very promising mainly due to the significant improvement of weld quality and reduces costs. Furthermore impact toughness and strengths of WMD were carried out. The present paper aims at outlining same of the recent innovations in MIG welding which represent steps ahead to achieve the objectives outlined above.


Sign in / Sign up

Export Citation Format

Share Document