Design of Gear-Form Cathode as a Removal Modus of Optical Materials of Indium-Tin-Oxide

2009 ◽  
Vol E92-C (11) ◽  
pp. 1358-1361
Author(s):  
Pai-Shan PA
Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 327
Author(s):  
Grigoriy I. Greisukh ◽  
Viktor A. Danilov ◽  
Evgeniy G. Ezhov ◽  
Sergey V. Kazin ◽  
Boris A. Usievich

Within the framework of rigorous diffraction theory, the maximum possible incidence angles of radiation on two-layer sawtooth relief-phase microstructures in the visible (0.4 ≤ λ ≤ 0.7 μm) spectral range are compared. Optical materials for the layers of these microstructures are selected from a database of 47 plastics and 165 molded glasses. It is shown that when the ratio of the spatial period of the microstructure to the effective depth of the relief is greater than 20, the achievable angles within which the diffraction efficiency exceeds 0.95 lie in a wide range from 18.5° to 40.5° for single-relief structures and 7.5° to 22.3° for structures with two internal reliefs. The best results for purely plastic microstructures are obtained when the plastic CMT and the indium tin oxide nanocomposite in polymethylmethacrylate are used.


2020 ◽  
Vol 13 (4) ◽  
pp. 722-727
Author(s):  
ZHU Ye-xin ◽  
◽  
◽  
LI Ya-nan ◽  
SHI Wei-jie ◽  
...  

1986 ◽  
Vol 22 (23) ◽  
pp. 1266 ◽  
Author(s):  
D.G. Parker ◽  
P.G. Say

The Analyst ◽  
1995 ◽  
Vol 120 (10) ◽  
pp. 2579-2583 ◽  
Author(s):  
Xiaohua Cai ◽  
Božidar Ogorevc ◽  
Gabrijela Tavčar ◽  
Joseph Wang

2021 ◽  
pp. 138731
Author(s):  
Bert Scheffel ◽  
Olaf Zywitzki ◽  
Thomas Preußner ◽  
Torsten Kopte

Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Xiaoyan Liu ◽  
Lei Wang ◽  
Yi Tong

First-principle density functional theory simulations have been performed to predict the electronic structures and optoelectronic properties of ultrathin indium tin oxide (ITO) films, having different thicknesses and temperatures. Our results and analysis led us to predict that the physical properties of ultrathin films of ITO have a direct relation with film thickness rather than temperature. Moreover, we found that a thin film of ITO (1 nm thickness) has a larger absorption coefficient, lower reflectivity, and higher transmittance in the visible light region compared with that of 2 and 3 nm thick ITO films. We suggest that this might be due to the stronger surface strain effect in 1 nm thick ITO film. On the other hand, all three thin films produce similar optical spectra. Finally, excellent agreement was found between the calculated electrical resistivities of the ultrathin film of ITO and that of its experimental data. It is concluded that the electrical resistivities reduce along with the increase in film thickness of ITO because of the short strain length and limited bandgap distributions.


Sign in / Sign up

Export Citation Format

Share Document