scholarly journals Pseudo Polynomial Time Algorithms for Optimal Longcut Route Selection

2015 ◽  
Vol E98.D (3) ◽  
pp. 607-616 ◽  
Author(s):  
Yuichi SUDO ◽  
Toshimitsu MASUZAWA ◽  
Gen MOTOYOSHI ◽  
Tutomu MURASE
Author(s):  
Akiyoshi Shioura

In this paper, we consider a problem of minimizing an M-convex function under an L1-distance constraint (MML1); the constraint is given by an upper bound for L1-distance between a feasible solution and a given “center.” This is motivated by a nonlinear integer programming problem for reallocation of dock capacity in a bike-sharing system discussed by Freund et al. (2017). The main aim of this paper is to better understand the combinatorial structure of the dock reallocation problem through the connection with M-convexity and show its polynomial-time solvability using this connection. For this, we first show that the dock reallocation problem and its generalizations can be reformulated in the form of (MML1). We then present a pseudo-polynomial-time algorithm for (MML1) based on the steepest descent approach. We also propose two polynomial-time algorithms for (MML1) by replacing the L1-distance constraint with a simple linear constraint. Finally, we apply the results for (MML1) to the dock reallocation problem to obtain a pseudo-polynomial-time steepest descent algorithm and also polynomial-time algorithms for this problem. For this purpose, we develop a polynomial-time algorithm for a relaxation of the dock reallocation problem by using a proximity-scaling approach, which is of interest in its own right.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
F. A. Kuipers

Network survivability—the ability to maintain operation when one or a few network components fail—is indispensable for present-day networks. In this paper, we characterize three main components in establishing network survivability for an existing network, namely, (1) determining network connectivity, (2) augmenting the network, and (3) finding disjoint paths. We present a concise overview of network survivability algorithms, where we focus on presenting a few polynomial-time algorithms that could be implemented by practitioners and give references to more involved algorithms.


Sign in / Sign up

Export Citation Format

Share Document