scholarly journals THREE DIMENSIONAL CHARACTERIZATION OF SOIL MACROPOROSITY BY X-RAY MICROTOMOGRAPHY

2015 ◽  
Vol 39 (2) ◽  
pp. 448-457 ◽  
Author(s):  
Sabrina Passoni ◽  
Luiz Fernando Pires ◽  
Richard Heck ◽  
Jadir Aparecido Rosa

Analysis of the soil pore system represents an important way of characterizing soil structure. Properties such as the shape and number of pores can be determined through soil pore evaluations. This study presents a three-dimensional (3D) characterization of the shape and number of pores of a sub-tropical soil. To do so, a second generation X-ray microtomograph equipped with a plain type detector was employed. A voltage of 120 kV and current of 80 mA was applied to the X-ray tube. The soil samples analyzed were collected at three different depths (0-10, 10-20, and 20-30 cm). The results obtained allowed qualitative (images) and quantitative (3D) analyses of the soil structure, revealing the potential of the microtomographic technique, as well as the study of differences in soil macroporosity at different depths. Macroporosity was 5.14 % in the 0-10 cm layer, 5.10 % in the 10-20 cm layer, and 6.64 % in the 20-30 cm layer. The macroporosity of unclassified pores (UN) was 0.30 % (0-10 and 10-20 cm) and 0.40 % (20-30 cm), while equant pores (EQ) had values of 0.01 % at the three depths under analysis.

2021 ◽  
Vol 127 ◽  
pp. 388-397
Author(s):  
Rani Puthukulangara Ramachandran ◽  
Chyngyz Erkinbaev ◽  
Sandeep Thakur ◽  
Jitendra Paliwal

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 255
Author(s):  
Marie Tahon ◽  
Silvio Montresor ◽  
Pascal Picart

Digital holography is a very efficient technique for 3D imaging and the characterization of changes at the surfaces of objects. However, during the process of holographic interferometry, the reconstructed phase images suffer from speckle noise. In this paper, de-noising is addressed with phase images corrupted with speckle noise. To do so, DnCNN residual networks with different depths were built and trained with various holographic noisy phase data. The possibility of using a network pre-trained on natural images with Gaussian noise is also investigated. All models are evaluated in terms of phase error with HOLODEEP benchmark data and with three unseen images corresponding to different experimental conditions. The best results are obtained using a network with only four convolutional blocks and trained with a wide range of noisy phase patterns.


2018 ◽  
Vol 139 ◽  
pp. 75-82 ◽  
Author(s):  
A.H. Galmed ◽  
A. du Plessis ◽  
S.G. le Roux ◽  
E. Hartnick ◽  
H. Von Bergmann ◽  
...  

2000 ◽  
Vol 33 (4) ◽  
pp. 1023-1030 ◽  
Author(s):  
M. Ohler ◽  
M. Sanchez del Rio ◽  
A. Tuffanelli ◽  
M. Gambaccini ◽  
A. Taibi ◽  
...  

Section topographs recorded at different spatial locations and at different rocking angles of a highly oriented pyrolytic graphite (HOPG) crystal allow three-dimensional maps of the local angular-dependent scattering power to be obtained. This is performed with a direct reconstruction from the intensity distribution on such topographs. The maps allow the extraction of information on local structural parameters such as size, form and internal mosaic spread of crystalline domains. This data analysis leads to a new method for the characterization of mosaic crystals. Perspectives and limits of applicability of this method are discussed.


Author(s):  
Xiao Wei Fu ◽  
Jie Huang ◽  
E.S. Thian ◽  
Serena M. Best ◽  
William Bonfield

Author(s):  
Anatoly Frenkel

We discuss methods of Extended X-ray Absorption Fine-Structure (EXAFS) analysis that provide three-dimensional structural characterization of metal nanoparticles, both mono- and bi-metallic. For the bimetallic alloys, we use short range order measurements to discriminate between random and non-random inter-particle distributions of atoms. We also discuss the application of EXAFS to heterogeneous nanoparticle systems.


2007 ◽  
Vol 330-332 ◽  
pp. 503-506
Author(s):  
Xiao Wei Fu ◽  
Jie Huang ◽  
E.S. Thian ◽  
Serena Best ◽  
William Bonfield

A Bioglass® reinforced polyethylene (Bioglass®/polyethylene) composite has been prepared, which combines the high bioactivity of Bioglass® and the toughness of polyethylene. The spatial distribution of Bioglass® particles within the composite is important for the performance of composites in-vivo. Recent developments in X-ray microtomography (XμT) have made it possible to visualize internal and microstructural details with different X-ray absorbencies, nondestructively, and to acquire 3D information at high spatial resolution. In this study, the volume fraction and 3D spatial distribution of Bioglass® particles has been acquired quantitatively by XμT. The information obtained provides a foundation for understanding the mechanical and bioactive properties of the Bioglass®/polyethylene composites.


2003 ◽  
Vol 58 (1) ◽  
pp. 151-154 ◽  
Author(s):  
Rosa Carballo ◽  
Berta Covelo ◽  
Ezequiel M. Vázquez-Lópeza ◽  
Alfonso Castiñeiras ◽  
Juan Niclós

Abstract A new mixed-ligand complex of copper(II) with 1,10-phenanthroline and 2-methyllactate was prepared. [Cu(HmL)2(phen)] ·2H2O (where HmL = monodeprotonated 2-methyllactic acid) was characterized by elemental analysis, IR, electronic and EPR spectroscopy, magnetic measurements at room temperature, thermogravimetric analysis and X-ray diffractometry. The copper atom is in a tetragonally distorted octahedral environment and the 2-methyllactato ligand is bidentately chelating. The presence of lattice water molecules mediates the formation of a three-dimensional network.


2016 ◽  
Vol 22 (4) ◽  
pp. 808-813 ◽  
Author(s):  
Chandrashekara S. Kaira ◽  
Carl R. Mayer ◽  
V. De Andrade ◽  
Francesco De Carlo ◽  
Nikhilesh Chawla

AbstractThree-dimensional (3D) nondestructive microstructural characterization was performed using full-field transmission X-ray microscopy on an Sn-rich alloy, at a spatial resolution of 60 nm. This study highlights the use of synchrotron radiation along with Fresnel zone plate optics to perform absorption contrast tomography for analyzing nanoscale features of fine second phase particles distributed in the tin matrix, which are representative of the bulk microstructure. The 3D reconstruction was also used to quantify microstructural details of the analyzed volume.


Sign in / Sign up

Export Citation Format

Share Document