scholarly journals Sample size for estimating average trunk diameter and plant height in eucalyptus hybrids

2016 ◽  
Vol 46 (7) ◽  
pp. 1192-1199 ◽  
Author(s):  
Alberto Cargnelutti Filho ◽  
Rafael Beltrame ◽  
Dilson Antônio Bisognin ◽  
Marília Lazarotto ◽  
Clovis Roberto Haselein ◽  
...  

ABSTRACT: In eucalyptus crops, it is important to determine the number of plants that need to be evaluated for a reliable inference of growth. The aim of this study was to determine the sample size needed to estimate average trunk diameter at breast height and plant height of inter-specific eucalyptus hybrids. In 6,694 plants of twelve inter-specific hybrids it was evaluated trunk diameter at breast height at three (DBH3) and seven years (DBH7) and tree height at seven years (H7) of age. The statistics: minimum, maximum, mean, variance, standard deviation, standard error, and coefficient of variation were calculated. The hypothesis of variance homogeneity was tested. The sample size was determined by re sampling with replacement of 10,000 re samples. There was an increase in the sample size from DBH3 to H7 and DBH7. A sample size of 16, 59 and 31 plants is adequate to estimate DBH3, DBH7 and H7 means, respectively, of inter-specific hybrids of eucalyptus, with amplitude of confidence interval of 95% equal to 20% of the estimated mean.

2021 ◽  
Vol 13 (8) ◽  
pp. 4167
Author(s):  
David Kombi Kaviriri ◽  
Huan-Zhen Liu ◽  
Xi-Yang Zhao

In order to determine suitable traits for selecting high-wood-yield Korean pine materials, eleven morphological characteristics (tree height, basal diameter, diameter at breast height, diameter at 3 meter height, stem straightness degree, crown breadth, crown height, branch angle, branch number per node, bark thickness, and stem volume) were investigated in a 38-year-old Korean pine clonal trial at Naozhi orchard. A statistical approach combining variance and regression analysis was used to extract appropriate traits for selecting elite clones. Results of variance analysis showed significant difference in variance sources in most of the traits, except for the stem straightness degree, which had a p-value of 0.94. Moderate to high coefficients of variation and clonal repeatability ranged from 10.73% to 35.45% and from 0.06% to 0.78%, respectively. Strong significant correlations on the phenotypic and genotypic levels were observed between the straightness traits and tree volume, but crown breadth was weakly correlated to the volume. Four principal components retaining up to 80% of the total variation were extracted, and stem volume, basal diameter, diameter at breast height, diameter at 3 meter height, tree height, and crown height displayed high correlation to these components (r ranged from 0.76 to 0.98). Based on the Type III sum of squares, tree height, diameter at breast height, and branch number showed significant information to explain the clonal variability based on stem volume. Using the extracted characteristics as the selection index, six clones (PK105, PK59, PK104, PK36, PK28, and K101) displayed the highest Qi values, with a selection rate of 5% corresponding to the genetic gain of 42.96% in stem volume. This study provides beneficial information for the selection of multiple traits for genetically improved genotypes of Korean pine.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 380
Author(s):  
Karol Bronisz ◽  
Szymon Bijak ◽  
Rafał Wojtan ◽  
Robert Tomusiak ◽  
Agnieszka Bronisz ◽  
...  

Information about tree biomass is important not only in the assessment of wood resources but also in the process of preparing forest management plans, as well as for estimating carbon stocks and their flow in forest ecosystems. The study aimed to develop empirical models for determining the dry mass of the aboveground parts of black locust trees and their components (stem, branches, and leaves). The research was carried out based on data collected in 13 stands (a total of 38 sample trees) of black locust located in western Poland. The model system was developed based on multivariate mixed-effect models using two approaches. In the first approach, biomass components and tree height were defined as dependent variables, while diameter at breast height was used as an independent variable. In the second approach, biomass components and diameter at breast height were dependent variables and tree height was defined as the independent variable. Both approaches enable the fixed-effect and cross-model random-effect prediction of aboveground dry biomass components of black locust. Cross-model random-effect prediction was obtained using additional measurements of two extreme trees, defined as trees characterized by the smallest and largest diameter at breast height in sample plot. This type of prediction is more precise (root mean square error for stem dry biomass for both approaches equals 77.603 and 188.139, respectively) than that of fixed-effects prediction (root mean square error for stem dry biomass for both approaches equals 238.716 and 206.933, respectively). The use of height as an independent variable increases the possibility of the practical application of the proposed solutions using remote data sources.


2010 ◽  
Vol 59 (1-6) ◽  
pp. 1-7 ◽  
Author(s):  
G. P. S. Dhillon ◽  
Avtar Singh ◽  
Pritpal Singh ◽  
D. S. Sidhu

Abstract Results from clonal trials of Populus deltoides conducted in two distinct agroclimatic regions of Punjab in northwestern India are reported and discussed. Sixteen clones were evaluated at Hambran and Bathinda where commonly grown clone ‘G-48’ was considered as control. Significant differences among clones (P < 0.001) were observed for diameter at breast height (DBH), tree height and volume at the age of four and six years under both the site conditions. Clone ‘L-48’ ranked first for volume at six year age at both sites and was followed by clone ‘Ranikhet’. The respective superiority for volume of these clones over control was 44.8 and 23.2 per cent at Hambran and 72.5 and 30.7 per cent at Bathinda. All growth traits registered significantly higher values at Hambran in comparison to those at Bathinda. Clone x site interaction was also significant (P < 0.001). The clones ‘L-168’, ‘154/86’, ‘Solan-z’ and ‘170/88’ experienced huge fluctuation in ranking between sites for volume at 6-year age. The DBH and height showed significant and positive correlation with each other and with tree volume at all the age combinations. The clonal mean heritability was quite high both at Hambran (0.73-0.86) and Bathinda (0.80-0.95). The genetic advance were the highest for volume (33.34-64.26%) and the lowest (10.65-22.79%) in case of height.


2012 ◽  
Vol 94 (4) ◽  
pp. 188-191 ◽  
Author(s):  
Megumi Ishida ◽  
Satoshi Naoi ◽  
Yasumasa Watanabe ◽  
Akinori Tsuzuku ◽  
Masaya Aoki

2016 ◽  
Vol 58 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Katarzyna Kaźmierczak ◽  
Bogna Zawieja

AbstractThe paper presents an attempt to apply measurable traits of a tree – crown projection area, crown length, diameter at breast height and tree height for classification of 135-year-old oak (QuercusL.) trees into Kraft classes. Statistical multivariate analysis was applied to reach the aim. Empirical material was collected on sample plot area of 0.75 ha, located in 135-year-old oak stand. Analysis of dimensional traits of oaks from 135-year-old stand allows quite certain classification of trees into three groups: pre-dominant, dominant and co-dominant and dominated ones. This seems to be quite promising, providing a tool for the approximation of the biosocial position of tree with no need for assessment in forest. Applied analyses do not allow distinguishing trees belonging to II and III Kraft classes. Unless the eye-estimation-based classification is completed, principal component analysis (PCA) method provided simple, provisional solution for grouping trees from 135-year-old stand into three over-mentioned groups. Discriminant analysis gives more precise results compared with PCA. In the analysed stand, the most important traits for the evaluation of biosocial position were diameter at breast height, crown projection area and height.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 599 ◽  
Author(s):  
Ravaglia ◽  
Fournier ◽  
Bac ◽  
Véga ◽  
Côté ◽  
...  

Terrestrial laser scanners provide accurate and detailed point clouds of forest plots, which can be used as an alternative to destructive measurements during forest inventories. Various specialized algorithms have been developed to provide automatic and objective estimates of forest attributes from point clouds. The STEP (Snakes for Tuboid Extraction from Point cloud) algorithm was developed to estimate both stem diameter at breast height and stem diameters along the bole length. Here, we evaluate the accuracy of this algorithm and compare its performance with two other state-of-the-art algorithms that were designed for the same purpose (i.e., the CompuTree and SimpleTree algorithms). We tested each algorithm against point clouds that incorporated various degrees of noise and occlusion. We applied these algorithms to three contrasting test sites: (1) simulated scenes of coniferous stands in Newfoundland (Canada), (2) test sites of deciduous stands in Phalsbourg (France), and (3) coniferous plantations in Quebec, Canada. In most cases, the STEP algorithm predicted diameter at breast height with higher R2 and lower RMSE than the other two algorithms. The STEP algorithm also achieved greater accuracy when estimating stem diameter in occluded and noisy point clouds, with mean errors in the range of 1.1 cm to 2.28 cm. The CompuTree and SimpleTree algorithms respectively produced errors in the range of 2.62 cm to 6.1 cm and 1.03 cm to 3.34 cm, respectively. Unlike CompuTree or SimpleTree, the STEP algorithm was not able to estimate trunk diameter in the uppermost portions of the trees. Our results show that the STEP algorithm is more adapted to extract DBH and stem diameter automatically from occluded and noisy point clouds. Our study also highlights that SimpleTree and CompuTree require data filtering and results corrections. Conversely, none of these procedures were applied for the implementation of the STEP algorithm.


1998 ◽  
Vol 28 (6) ◽  
pp. 937-941 ◽  
Author(s):  
Anders Fries ◽  
Tore Ericsson

After 25 years, full-sibs of Scots pine (Pinus sylvestris L.) in a north Swedish progeny test showed an estimated heritability of 0.30 for heartwood diameter at 80 cm above ground. This was equal to the heritability estimate for tree height, although accompanied by a much larger additive genetic coefficient of variation (0.20 compared with 0.06). The heritability estimate for diameter at breast height was about half that for tree height. Strong and positive phenotypic and environmental correlations were assessed between heartwood and the following traits: diameter at breast height, tree height, and branch diameter. The genetic correlation was low and positive at 0.02 between heartwood and diameter at breast height in contrast with 0.27 between heartwood and tree height. The assessed genetic correlations between heartwood and branch diameter and between heartwood and crown length were very weak compared with the phenotypic and, particularly, environmental correlations. This indicates that the association between crown length and heartwood is significant with regard to environmental factors, no matter to what extent they are independently modified by genes. However, crown limit was the trait that showed the strongest genetic correlation with heartwood (0.49). Since no correlations with production traits were unfavorable, we conclude that including heartwood formation capacity in a breeding programmay be done without drawbacks and with good prospects for success.


Author(s):  
Sol de Mayo A. Mejenes-López ◽  
Gustavo E. Mendoza-Arroyo ◽  
Manuel Marín-Quintero ◽  
Ricardo Antonio Chiquini-Medina

Objective. To describe reproductive phenological stages, since the formation of flower buds, flowering, fruiting, up to the formation of the ripe fruit and foliation of 21 Couepia polyandra trees; and correlation of allometric data of tree height, diameter at breast height (DBH) and crown diameter, as well as the correlation of precipitation with reproductive phenology data. Methodology. The description of the reproductive phenology (foliage, formation of flower buds, flowers, fruits) was done by direct monthly observation with a digital camera (Canon SX60HS, 65). The correlation among precipitation, allometry, and types of soils where the trees grow was calculated by recording data from each tree by measuring height, diameter at breast height (DBH) and foliage. Results. The highest tree was 21.0 m; the widest DBH measured 68 cm; and the greater crown diameter was 34.45 m; the overall averages were 10.38 m, 33.17 cm and 9.37 m, respectively. A significant correlation was found between height and DBH (r=0.91, p<0.05); the correlations for the variables Height-Crown and DBH-Crown were not significant (p>0.05). Conclusions. Water as a factor is responsible for the formation of inflorescence and fruit; determining that these phenological events are dependent variables with precipitation, highlighting a mean positive relation with the growth of flowers.


Sign in / Sign up

Export Citation Format

Share Document