scholarly journals First report of the occurrence of Ophiocordyceps melolonthae (Ascomycota: Hypocreales: Ophiocordycipitaceae) in larvae of Diloboderus abderus Sturm (Coleoptera: Melolonthidae) in Brazil

2015 ◽  
Vol 15 (2) ◽  
Author(s):  
Geraldo Salgado-Neto ◽  
Ivair Valmorbida ◽  
Jerson Vanderlei Carús Guedes ◽  
Elena Blume

This note is the first report on the infection of Diloboderus abderus Sturm (Coleoptera: Melolonthidae) larvae by the fungusOphiocordyceps melolonthae (Hypocreales: Ophiocordycipitaceae) in subtropical Brazil. Identification was made possible by extraction and sequencing of the fungal DNA that was covering the larvae’s mouthparts, prothorax, cuticle, and digestive tract (alimentary canal). Amplification, sequencing and comparison of the ITS region of the ribosomal DNA with voucher sequences of GenBank were performed and were 95% similar to Ophiocordyceps melolonthae. The fungus is an entomopathogen which attacks Melolonthidae larvae, having scientific and economic importance because of the need for increased knowledge on its distribution and on alternatives for biological control of white grubs.

2019 ◽  
Vol 12 (1) ◽  
pp. 1-5
Author(s):  
A.A. Lahuf

Summary Lucky bamboo (Dracaena braunii) is a popular ornamental plant in Iraq. Individuals of this plant showing stem and root rot symptoms were observed during a survey conducted from November 2015 to February 2016 in several nurseries in Kerbala province, Iraq. Based on morphological characteristics and sequence analyses of the internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA), the pathogen was identified as Fusarium proliferatum. This is the first report of stem and root rot caused by F. proliferatum on lucky bamboo (D. braunii) in Iraq.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1431-1431 ◽  
Author(s):  
I. Y. Choi ◽  
B. S. Kim ◽  
J. H. Park ◽  
S. E. Cho ◽  
H. D. Shin

Perennial statice is widely cultivated worldwide. In Korea, hybrid statice (Limonium latifolium × bellidifolium) is grown as a commercial cut flower crop in polyethylene-film-covered greenhouses. In April 2013, hundreds of hybrid statice plants of the cvs. Yellow Cream and Pinky Cream were found symptomatic of a previously unknown disease, with 10 to 15% incidence in 10 greenhouses of 1,600 m2 surveyed in Gochang County, Korea. Affected stems turned dark brown and were usually covered with a fungus resembling the hoar-frost fungus, Botryosporium longibrachiatum (3), especially in a cool and humid environment. Symptoms consisted of stem blackening, as is typical for burley tobacco (1) and sweet basil (2). According to the farmer of the hybrid statice, stems blackened in the winter and spring of January to April when the tunnels were mostly closed, thus reaching 100% relative humidity (RH) every night due to poor ventilation. The fungus had an elongate main axis with lateral fertile branches in acropetal succession. Conidiophores were simple, erect, macronematous, 32 to 79 μm in length, with a terminal cluster of three to five ampullae. Conidiogneous cells were polyblastic. Conidia were ellipsoidal, elliptical-fusiform, hyaline, 7.6 to 9.5 × 3.0 to 4.2 μm. Colonies on potato dextrose agar (PDA) were floccose, non-pigmented, and chalk-white in color. Morphological and cultural characteristics of the fungus were consistent with previous reports of B. longibrachiatum (Oudem.) Maire (2,3). A voucher specimen was deposited in the Korea University Herbarium (KUS). Isolate KUS-F27305 was submitted to the Korean Agricultural Culture Collection (Accession No. KACC47263). Fungal DNA was extracted from isolate KACC47263 with DNeasy Plant Mini Kits. The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequence of 604 bp was deposited in GenBank (Accession No. KF372591). A BLAST search in GenBank exhibited ≥99% nucleotide identity with the ITS sequence of B. longibrachiatum (JX666334) from sweet basil in Korea. To confirm pathogenicity, colonized mycelial agar blocks from isolate KACC47263 were transferred individually onto stem apices and leaves of five statice plants of the cv. Yellow Cream. Five control plants were treated similarly with non-colonized agar blocks. The plants were incubated in a humid chamber at 22 ± 2°C with a 12-h photoperiod for 48 h, and then maintained in 100% RH. After 3 to 4 days, necrotic lesions identical to those observed in the original greenhouses, started to develop on the stem and leaves of inoculated plants, leading to blackened stems covered with the hoar-frost fungus after 14 days. B. longibrachiatum was re-isolated from the lesions of inoculated plants, fulfilling Koch's postulates. No symptoms were observed on control plants. The pathogenicity test was repeated with the cv. Pinky Cream with identical results. To our knowledge, this is the first report of B. longibrachiatum infecting perennial statice globally as well as in Korea. We propose the name black stem of statice for this disease, analogous to the disease on basil (2). References: (1) T. R. Anderson and T. W. Welacky. Plant Dis. 67:1158, 1983. (2) J. H. Park et al. Plant Dis. 97:425, 2013. (3) C. V. Subramanian. Hyphomycetes. Indian Council of Agricultural Research, New Delhi, India, 1971.


1996 ◽  
Vol 86 (3) ◽  
pp. 227-245 ◽  
Author(s):  
M. Jamil ◽  
K. Chishti ◽  
Donald L.J. Quicke

AbstractThe genus Stenobracon Szépligeti which contains species of economic importance for biological control of lepidopterous borers of sugarcane, rice and other graminaceous crops in Asia, is revised. Principal components analysis was employed to help delineate species. Six species, distributed from Pakistan to Australia, are recognized. Stenobracon brevis, S. clarus and S. malensis are described as new and Stenobracon nicevillei (Bingham), S. deesae (Cameron) and S. oculatus Szépligeti are redescribed. Illustrated keys for males and females are provided. Phanaulax levituberculatus Cameron is a new junior subjective synonym of S. nicevillei and S. trifasciatus Szépligeti is a new junior subjective synonym of S. oculatus. Elphea flavomaculata Cameron is synonymized with Ischnobracon (Bracon) laboriosus Cameron (comb. n). Host records are summarized.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1160-1160
Author(s):  
F. Flores ◽  
N. R. Walker

Sandbur (Cenchrus incertus Curtis) is a warm-season, annual, noxious, grassy weed native to southern North America. It is common in sandy, disturbed soils and can also be found in home lawns and sport fields where low turf density facilitates its establishment. In July 2013, after a period of frequent rainfall and heavy dew, symptoms of dollar spot-like lesions (1) were observed on sandbur plants growing in a mixed stand of turf-type and native warm-season grasses in Logan County, Oklahoma. Lesions, frequently associated with leaf sheaths, were tan and surrounded by a dark margin. Symptomatic leaves were surface sterilized and plated on potato dextrose agar amended with 10 ppm rifampicin, 250 ppm ampicillin, and 5 ppm fenpropathrin. After incubation, a fungus morphologically identical to Sclerotinia homoeocarpa Bennett was consistently isolated. The nuclear ribosomal internal transcribed spacer (ITS) region of two different isolates, SCL2 and SCL3, were amplified using primers ITS4 and ITS5 (2). The DNA products were sequenced and BLAST analyses were used to compare sequences with those in GenBank. The sequence for isolate SLC2 was 869 bp, contained a type I intron in the 18S small subunit rDNA, and was identical to accession EU123803. The ITS sequence for isolate SLC3 was 535 bp and identical to accession EU123802. Twenty-five-day-old seedlings of C. incertus were inoculated by placing 5-mm-diameter agar plugs, colonized by mycelia of each S. homoeocarpa isolate, onto two of the plants' leaves. Plugs were held in place with Parafilm. Two plants were inoculated with each isolate and sterile agar plugs were placed on two leaves of another seedling as control. Plants were incubated in a dew chamber at 20°C and a 12-h photoperiod. After 3 days of incubation, water-soaked lesions surrounded by a dark margin appeared on inoculated plants only. Fungi that were later identified as S. homoeocarpa isolates SLC2 and SLC3 by sequencing of the ITS region were re-isolated from symptomatic leaves, fulfilling Koch's postulates. To our knowledge, this is the first report of dollar spot on sandbur. References: (1) R. W. Smiley et al. Page 22 in: Compendium of Turfgrass Diseases. 3rd ed. The American Phytopathological Society, St. Paul, MN, 2005. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1654-1654 ◽  
Author(s):  
A. L. Vu ◽  
M. M. Dee ◽  
J. Zale ◽  
K. D. Gwinn ◽  
B. H. Ownley

Knowledge of pathogens in switchgrass, a potential biofuels crop, is limited. In December 2007, dark brown to black irregularly shaped foliar spots were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) on the campus of the University of Tennessee. Symptomatic leaf samples were surface-sterilized (95% ethanol, 1 min; 20% commercial bleach, 3 min; 95% ethanol, 1 min), rinsed in sterile water, air-dried, and plated on 2% water agar amended with 3.45 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). A sparsely sporulating, dematiaceous mitosporic fungus was observed. Fungal plugs were transferred to surface-sterilized detached ‘Alamo’ leaves on sterile filter paper in a moist chamber to increase spore production. Conidia were ovate, oblong, mostly straight to slightly curved, and light to olive-brown with 3 to 10 septa. Conidial dimensions were 12.5 to 17 × 27.5 to 95 (average 14.5 × 72) μm. Conidiophores were light brown, single, multiseptate, and geniculate. Conidial production was polytretic. Morphological characteristics and disease symptoms were similar to those described for Bipolaris oryzae (Breda de Haan) Shoemaker (2). Disease assays were done with 6-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized in 50% bleach. Nine 9 × 9-cm square pots with approximately 20 plants per pot were inoculated with a mycelial slurry (due to low spore production) prepared from cultures grown on potato dextrose agar for 7 days. Cultures were flooded with sterile water and rubbed gently to loosen mycelium. Two additional pots were inoculated with sterile water and subjected to the same conditions to serve as controls. Plants were exposed to high humidity by enclosure in a plastic bag for 72 h. Bags were removed, and plants were incubated at 25/20°C with 50 to 60% relative humidity. During the disease assay, plants were kept in a growth chamber with a 12-h photoperiod of fluorescent and incandescent lighting. Foliar leaf spot symptoms appeared 5 to 14 days post-inoculation for eight of nine replicates. Control plants had no symptoms. Symptomatic leaf tissue was processed and plated as described above. The original fungal isolate and the pathogen recovered in the disease assay were identified using internal transcribed spacer (ITS) region sequences. The ITS region of rDNA was amplified with PCR and primer pairs ITS4 and ITS5 (4). PCR amplicons of 553 bp were sequenced, and sequences from the original isolate and the reisolated pathogen were identical (GenBank Accession No. JQ237248). The sequence had 100% nucleotide identity to B. oryzae from switchgrass in Mississippi (GU222690, GU222691, GU222692, and GU222693) and New York (JF693908). Leaf spot caused by B. oryzae on switchgrass has also been described in North Dakota (1) and was seedborne in Mississippi (3). To our knowledge, this is the first report of B. oryzae from switchgrass in Tennessee. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/, 28 June 2012. (2) J. M. Krupinsky et al. Can. J. Plant Pathol. 26:371, 2004. (3) M. Tomaso-Peterson and C. J. Balbalian. Plant Dis. 94:643, 2010. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. M. A. Innis et al. (eds), Acad. Press, San Diego, 1990.


Plant Disease ◽  
2020 ◽  
Author(s):  
Siti Izera Ismail ◽  
Nur Adlina Rahim ◽  
Dzarifah Zulperi

Thai basil (Ocimum basilicum L.) is widely cultivated in Malaysia and commonly used for culinary purposes. In March 2019, necrotic lesions were observed on the inflorescences of Thai basil plants with a disease incidence of 60% in Organic Edible Garden Unit, Faculty of Agriculture in the Serdang district (2°59'05.5"N 101°43'59.5"E) of Selangor province, Malaysia. Symptoms appeared as sudden, extensive brown spotting on the inflorescences of Thai basil that coalesced and rapidly expanded to cover the entire inflorescences. Diseased tissues (4×4 mm) were cut from the infected lesions, surface disinfected with 0.5% NaOCl for 1 min, rinsed three times with sterile distilled water, placed onto potato dextrose agar (PDA) plates and incubated at 25°C under 12-h photoperiod for 5 days. A total of 8 single-spore isolates were obtained from all sampled inflorescence tissues. The fungal colonies appeared white, turned grayish black with age and pale yellow on the reverse side. Conidia were one-celled, hyaline, subcylindrical with rounded end and 3 to 4 μm (width) and 13 to 15 μm (length) in size. For fungal identification to species level, genomic DNA of representative isolate (isolate C) was extracted using DNeasy Plant Mini Kit (Qiagen, USA). Internal transcribed spacer (ITS) region, calmodulin (CAL), actin (ACT), and chitin synthase-1 (CHS-1) were amplified using ITS5/ITS4 (White et al. 1990), CL1C/CL2C (Weir et al. 2012), ACT-512F/783R, and CHS-79F/CHS-345R primer sets (Carbone and Kohn 1999), respectively. A BLAST nucleotide search of ITS, CHS-1, CAL and ACT sequences showed 100% similarity to Colletotrichum siamense ex-type cultures strain C1315.2 (GenBank accession nos. ITS: JX010171 and CHS-1: JX009865) and isolate BPDI2 (CAL: FJ917505, ACT: FJ907423). The ITS, CHS-1, CAL and ACT sequences were deposited in GenBank as accession numbers MT571330, MW192791, MW192792 and MW140016. Pathogenicity was confirmed by spraying a spore suspension (1×106 spores/ml) of 7-day-old culture of isolate C onto 10 healthy inflorescences on five healthy Thai basil plants. Ten infloresences from an additional five control plants were only sprayed with sterile distilled water and the inoculated plants were covered with plastic bags for 2 days and maintained in a greenhouse at 28 ± 1°C, 98% relative humidity with a photoperiod of 12-h. Blossom blight symptoms resembling those observed in the field developed after 7 days on all inoculated inflorescences, while inflorescences on control plants remained asymptomatic. The experiment was repeated twice. C. siamense was successfully re-isolated from the infected inflorescences fulfilling Koch’s postulates. C. siamense has been reported causing blossom blight of Uraria in India (Srivastava et al. 2017), anthracnose on dragon fruit in India and fruits of Acca sellowiana in Brazil (Abirami et al. 2019; Fantinel et al. 2017). This pathogen can cause a serious threat to cultivation of Thai basil and there is currently no effective disease management strategy to control this disease. To our knowledge, this is the first report of blossom blight caused by C. siamense on Thai basil in Malaysia.


Author(s):  
Elias Alisaac ◽  
Monika Götz

AbstractPeppermint is an important medicinal plant, and it is known for its essential oils and phenolic acids. Verticillium wilt is a vascular disease resulted from several Verticillium spp. causing significant economic losses in peppermint cultivation. In this study, the fungus Gibellulopsis nigrescens (syn. Verticillium nigrescens) was isolated from symptomless peppermint plants during the regular control of Verticillium wilt on peppermint in Germany. A pure fungal culture was prepared, and fungal DNA was extracted. Ribosomal internal transcribed spacer (ITS), beta-tubulin (TUB), and translation elongation factor 1-α (TEF1-α) were amplified, sequenced, and deposited in the GenBank. These sequences are located within the Gibellulopsis nigrescens cluster. Koch’s postulate was fulfilled, and the fungus was re-isolated from the inoculated plants. Up to our knowledge, this is the first report of Gibellulopsis nigrescens on peppermint in Germany.


2017 ◽  
Vol 47 (4) ◽  
Author(s):  
Geraldo Salgado-Neto ◽  
Janine Palma ◽  
Valmir Antonio Costa

ABSTRACT: This note is the first report of Syntomopus parisii De Santis 1976 and Leptomeraporus sp. (Hymenoptera, Pteromalidae) simultaneously parasitizing Melanagromyza sojae Zehntner, 1900 (Diptera, Agromyzidae) in Brazil. The Pteromalidae parasitoids are natural enemies of stem miner flies, opening perspectives for biological control of soybean stem miner fly.


Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 110-110 ◽  
Author(s):  
T. Kolomiets ◽  
Z. Mukhina ◽  
T. Matveeva ◽  
D. Bogomaz ◽  
D. K. Berner ◽  
...  

Salsola tragus L. (Russian thistle) is a problematic invasive weed in the western United States and a target of biological control efforts. In September of 2007, dying S. tragus plants were found along the Azov Sea at Chushka, Russia. Dying plants had irregular, necrotic, canker-like lesions near the base of the stems and most stems showed girdling and cracking. Stem lesions were dark brown and contained brown pycnidia within and extending along lesion-free sections of the stems and basal portions of leaves. Diseased stems were cut into 3- to 5-mm pieces and disinfested in 70% ethyl alcohol. After drying, stem pieces were placed into petri dishes on the surface of potato glucose agar. Numerous, dark, immersed erumpent pycnidia with a single ostiole were observed in all lesions after 2 to 3 days. Axenic cultures were sent to the Foreign Disease-Weed Science Research Unit, USDA, ARS, Ft. Detrick, MD for testing in quarantine. Conidiophores were simple, cylindrical, and 5 to 25 × 2 μm (mean 12 × 2 μm). Alpha conidia were biguttulate, one-celled, hyaline, nonseptate, ovoid, and 6.3 to 11.5 × 1.3 to 2.9 μm (mean 8.8 × 2.0 μm). Beta conidia were one-celled, filiform, hamate, hyaline, and 11.1 to 24.9 × 0.3 to 2.5 μm (mean 17.7 × 1.2 μm). The isolate was morphologically identified as a species of Phomopsis, the conidial state of Diaporthe (1). The teleomorph was not observed. A comparison with available sequences in GenBank using BLAST found 528 of 529 identities with the internal transcribed spacer (ITS) sequence of an authentic and vouchered Diaporthe eres Nitschke (GenBank DQ491514; BPI 748435; CBS 109767). Morphology is consistent with that of Phomopsis oblonga (Desm.) Traverso, the anamorph of D. eres (2). Healthy stems and leaves of 10 30-day-old plants of S. tragus were spray inoculated with an aqueous suspension of conidia (1.0 × 106 alpha conidia/ml plus 0.1% v/v polysorbate 20) harvested from 14-day-old cultures grown on 20% V8 juice agar. Another 10 control plants were sprayed with water and surfactant without conidia. Plants were placed in an environmental chamber at 100% humidity (rh) for 16 h with no lighting at 25°C. After approximately 24 h, plants were transferred to a greenhouse at 20 to 25°C, 30 to 50% rh, and natural light. Stem lesions developed on three inoculated plants after 14 days and another three plants after 21 days. After 70 days, all inoculated plants were diseased, four were dead, and three had more than 75% diseased tissue. No symptoms occurred on control plants. The Phomopsis state was recovered from all diseased plants. This isolate of D. eres is a potential biological control agent of S. tragus in the United States. A voucher specimen has been deposited with the U.S. National Fungus Collections (BPI 878717). Nucleotide sequences for the ribosomal ITS regions (ITS 1 and 2) were deposited in GenBank (Accession No. EU805539). To our knowledge, this is the first report of stem canker on S. tragus caused by D. eres. References: (1) B. C. Sutton. Page 569 in: The Coelomycetes. CMI, Kew, Surrey, UK, 1980. (2) L. E. Wehmeyer. The Genus Diaporthe Nitschke and its Segregates. University of Michigan Press, Ann Arbor, 1933.


Sign in / Sign up

Export Citation Format

Share Document