scholarly journals Lewy and his inclusion bodies: Discovery and rejection

2017 ◽  
Vol 11 (2) ◽  
pp. 198-201 ◽  
Author(s):  
Eliasz Engelhardt ◽  
Marleide da Mota Gomes

ABSTRACT Fritz Jacob Heinrich Lewy described the pathology of Paralysis agitans [Parkinson disease] and was the first to identify eosinophilic inclusion bodies in neurons of certain brain nuclei, later known as Lewy bodies, the pathological signature of the Lewy body diseases. In 1912, he published his seminal study, followed soon after by an update paper, and 10 years later, in 1923, by his voluminous book, where he exhaustively described the subject. The publication provided extensive information on the pathology of Paralysis agitans, and the entirely novel finding of eosinophilic inclusion bodies, which would become widely recognized and debated in the future. His discovery was acknowledged by important researchers who even named the structure after him. However, after his last publication on the issue, inexplicably, he never mentioned his histopathological discovery again. Despite several hypotheses, the reasons that led him to neglect (reject) the structure which he so preeminently described have remained elusive.

2017 ◽  
Vol 75 (10) ◽  
pp. 751-753 ◽  
Author(s):  
Eliasz Engelhardt

ABSTRACT Fritz Heinrich Jakob Lewy described, for the first time, in 1912, novel peculiar inclusions in neurons of certain brain nuclei in patients with Paralysis agitans, and compared his finding to the amyloid bodies described by Lafora one year before. Gonzalo Rodriguez Lafora studied one patient with Paralysis agitans, in 1913, and recognized, described, and depicted structures identical to those previously reported by Lewy. He was the first to acknowledge Lewy's finding, and also the first to name such inclusions after the discoverer – cuerpos intracelulares de Lewy (Lewy bodies). Konstantin Nikolaevich Trétiakoff named the inclusions he found in neurons of the substantia nigra of patients with Parkinson's disease as corps de Lewy (Lewy bodies), in 1919. Trétiakoff has unanimously received the credit for the eponym. However, Lafora's earlier description should make him deserving of the authorship of the eponym.


Author(s):  
Rahel Feleke ◽  
Regina H. Reynolds ◽  
Amy M. Smith ◽  
Bension Tilley ◽  
Sarah A. Gagliano Taliun ◽  
...  

AbstractParkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular “window” of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Yoshiki Takamatsu ◽  
Masayo Fujita ◽  
Gilbert J. Ho ◽  
Ryoko Wada ◽  
Shuei Sugama ◽  
...  

Lewy body diseases, such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), are associated with a wide range of nonmotor symptoms (NMS), including cognitive impairment, depression and anxiety, sleep disorders, gastrointestinal symptoms, and autonomic failure. The reason why such diverse and disabling NMS have not been weeded out but have persisted across evolution is unknown. As such, one possibility would be that the NMS might be somehow beneficial during development and/or reproductive stages, a possibility consistent with our recent view as to the evolvability of amyloidogenic proteins (APs) such as α-synuclein (αS) and amyloid-β (Aβ) in the brain. Based on the heterogeneity of protofibrillar AP forms in terms of structure and cytotoxicity, we recently proposed that APs might act as vehicles to deliver information regarding diverse internal and environmental stressors. Also, we defined evolvability to be an epigenetic phenomenon whereby APs are transgenerationally transmitted from parents to offspring to cope with future brain stressors in the offspring, likely benefitting the offspring. In this context, the main objective is to discuss whether NMS might be relevant to evolvability. According to this view, information regarding NMS may be transgenerationally transmitted by heterogeneous APs to offspring, preventing or attenuating the stresses related to such symptoms. On the other hand, NMS associated with Lewy body pathology might manifest through an aging-associated antagonistic pleiotropy mechanism. Given that NMS are not only specific to Lewy body diseases but also displayed in other disorders, including amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD), these conditions might share common mechanisms related to evolvability. This might give insight into novel therapy strategies based on antagonistic pleiotropy rather than on individual NMS from which to develop disease-modifying therapies.


2020 ◽  
Vol 40 (05) ◽  
pp. 502-514
Author(s):  
David S. Goldstein

AbstractThe catecholamines dopamine and norepinephrine are key central neurotransmitters that participate in many neurobehavioral processes and disease states. Norepinephrine is also the main neurotransmitter mediating regulation of the circulation by the sympathetic nervous system. Several neurodegenerative disorders feature catecholamine deficiency. The most common is Parkinson's disease (PD), in which putamen dopamine content is drastically reduced. PD also entails severely decreased myocardial norepinephrine content, a feature that characterizes two other Lewy body diseases—pure autonomic failure and dementia with Lewy bodies. It is widely presumed that tissue catecholamine depletion in these conditions results directly from loss of catecholaminergic neurons; however, as highlighted in this review, there are also important functional abnormalities in extant residual catecholaminergic neurons. We refer to this as the “sick-but-not-dead” phenomenon. The malfunctions include diminished dopamine biosynthesis via tyrosine hydroxylase (TH) and L-aromatic-amino-acid decarboxylase (LAAAD), inefficient vesicular sequestration of cytoplasmic catecholamines, and attenuated neuronal reuptake via cell membrane catecholamine transporters. A unifying explanation for catecholaminergic neurodegeneration is autotoxicity exerted by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate intermediate in cytoplasmic dopamine metabolism. In PD, putamen DOPAL is built up with respect to dopamine, associated with a vesicular storage defect and decreased aldehyde dehydrogenase activity. Probably via spontaneous oxidation, DOPAL potently oligomerizes and forms quinone-protein adducts with (“quinonizes”) α-synuclein (AS), a major constituent in Lewy bodies, and DOPAL-induced AS oligomers impede vesicular storage. DOPAL also quinonizes numerous intracellular proteins and inhibits enzymatic activities of TH and LAAAD. Treatments targeting DOPAL formation and oxidation therefore might rescue sick-but-not-dead catecholaminergic neurons in Lewy body diseases.


2021 ◽  
Author(s):  
Christopher Hatton ◽  
Simona S. Ghanem ◽  
David Koss ◽  
Ilham Yahya Abdi ◽  
Elizabeth Gibbons ◽  
...  

Krabbe disease (KD) is an infantile neurodegenerative disorder resulting from pathogenic variants in the GALC gene which causes accumulation of the toxic sphingolipid psychosine. GALC variants are associated with increased risk of Lewy body diseases (LBD), an umbrella term for age-associated neurodegenerative diseases in which the protein α-synuclein aggregates into Lewy bodies. To explore whether α-synuclein in KD has pathological similarities to that in LBD, we compared post-mortem KD tissue to that of infant control cases and identified alterations to α-synuclein localisation and expression of modifications associated with LBD. To determine whether α-synuclein in KD displayed pathogenic properties associated with LBD we evaluated its seeding capacity using the real-time quaking-induced conversion assay. Strikingly, seeded aggregation of α-synuclein resulted in the formation of fibrillar aggregates similar to those observed in LBD, confirming the prion-like capacity of KD-derived α-synuclein. These observations constitute the first report of prion-like α-synuclein in the brain tissue of infants and challenge the putative view that α-synuclein pathology is merely an age-associated phenomenon, instead suggesting it can result from alterations to biological processes such as sphingolipid homeostasis. Our findings have important implications for understanding the mechanisms underlying Lewy body formation in LBD.


2017 ◽  
Author(s):  
Yasmine Y. Fathy ◽  
Frank Jan de Jong ◽  
Anne-Marie van Dam ◽  
Annemieke J.M. Rozemuller ◽  
Wilma D.J. van de Berg

AbstractThe insular cortex is a heterogeneous and widely connected brain region. It plays a role in autonomic, cognitive, emotional and somatosensory functions. Its complex and unique cytoarchitecture includes a periallocortical agranular, pro-isocortical dysgranular, and isocortical granular sub-regions. In Parkinson’s disease (PD), the insula shows α-synuclein inclusions in advanced stages of the disease and its atrophy correlates with cognitive deficits. However, little is known regarding its regional neuropathological characteristics and vulnerability in Lewy body diseases. The aim of this study is to assess the distribution pattern of α-synuclein pathology in the insular sub-regions and the selective vulnerability of its different cell types in PD and dementia with Lewy bodies (DLB). Human post-mortem insular tissues from 10 donors with incidental Lewy body disease (iLBD), PD, DLB, and age-matched controls were immunostained for α-synuclein and glial fibrillary acid protein (GFAP). Results showed that a decreasing gradient of α-synuclein pathology was present from agranular to granular sub-regions in iLBD, PD and PD with dementia (PDD) donors. The agranular insula was heavily inflicted, revealing various α-synuclein immunoreactive morphological structures, predominantly Lewy neurites (LNs), and astroglial synucleinopathy. While dysgranular and granular sub-regions showed a decreasing gradient of inclusions and more Lewy bodies (LBs) in deeper layers. In DLB, this gradient was less pronounced and severe pathology was observed in the granular insula compared to PDD and regardless of disease stage. Protoplasmic astrocytes showed α-synuclein inclusions and severe degenerative changes increasing with disease severity. While few von Economo neurons (VENs) in the fronto-insular region revealed inclusions, particularly in PDD patients. Our study reports novel findings on the differential involvement of the insular sub-regions in PD and particular involvement of the agranular sub-region, VENs and astrocytes. Thus, the differential cellular architecture of the insular sub-regions portrays the topographic variation and vulnerability to α-synuclein pathology in Lewy body diseases.


2021 ◽  
pp. 680-688
Author(s):  
Rodolfo Savica ◽  
Pierpaolo Turcano ◽  
Bradley F. Boeve

The differential diagnosis for dementia is wide. A slowly progressive course for parkinsonism suggests a degenerative cause and helps to narrow the differential diagnosis considerably. In patients with dementia in combination with parkinsonism (often collectively termed the parkinsonism-related dementias), the 4 most common neurodegenerative entities are 1) Lewy body dementias (which include dementia with Lewy bodies and Parkinson disease with dementia); 2) corticobasal syndrome or corticobasal degeneration; 3) Richardson syndrome or progressive supranuclear palsy; and 4) frontotemporal dementia with parkinsonism.


2015 ◽  
Vol 42 (5) ◽  
pp. 436-450 ◽  
Author(s):  
C. Ruffmann ◽  
F. C. F. Calboli ◽  
I. Bravi ◽  
D. Gveric ◽  
L. K. Curry ◽  
...  

Author(s):  
Elijah Mak ◽  
Antonina Kouli ◽  
Negin Holland ◽  
Nicolas Nicastro ◽  
George Savulich ◽  
...  

Abstract While [18F]-AV-1451 was developed as a positron emission tomography (PET) radiotracer with high affinity for hyperphosphorylated tau, it has been proposed that loss of “off-target” [18F]-AV-1451 binding to neuromelanin in the substantia nigra could be a surrogate marker of Lewy body diseases. [18F]-AV-1451 binding was measured in the substantia nigra of patients with Parkinson’s disease (n = 35), dementia with Lewy bodies (n = 10) and separate control groups (n = 37; n = 14). Associations with motor symptoms, cognition, and disease duration were evaluated using linear regression models. The dementia with Lewy bodies group had significantly reduced substantia nigra [18F]-AV-1451 binding compared to controls after adjusting for age (p < 0.05). However, there were no significant differences in substantia nigra [18F]-AV-1451 binding between Parkinson’s disease and controls. Substantia nigra [18F]-AV-1451 binding was not associated with age, disease duration, Movement Disorders Society—Unified Parkinson’s Disease Rating Scale and cognitive scores in dementia with Lewy bodies and Parkinson’s disease groups. Despite the reduction of substantia nigra [18F]-AV-1451 binding in dementia with Lewy bodies, these findings suggest that substantia nigra [18F]-AV-1451 binding has no value as a diagnostic marker in early Parkinson’s disease. Further investigations in longitudinal cohorts are warranted.


2021 ◽  
Author(s):  
Rahel Feleke ◽  
Regina H. Reynolds ◽  
Amy Smith ◽  
Bension Tilley ◽  
Sarah A. Gagliano Taliun ◽  
...  

AbstractParkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular “window” of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.


Sign in / Sign up

Export Citation Format

Share Document