scholarly journals Treadmill exercise does not change gene expression of adrenal catecholamine biosynthetic enzymes in chronically stressed rats

2013 ◽  
Vol 85 (3) ◽  
pp. 999-1012 ◽  
Author(s):  
LJUBICA GAVRILOVIC ◽  
VESNA STOJILJKOVIC ◽  
JELENA KASAPOVIC ◽  
NATASA POPOVIC ◽  
SNEZANA B. PAJOVIC ◽  
...  

ABSTRACT Chronic isolation of adult animals represents a form of psychological stress that produces sympatho-adrenomedullar activation. Exercise training acts as an important modulator of sympatho-adrenomedullary system. This study aimed to investigate physical exercise-related changes in gene expression of catecholamine biosynthetic enzymes (tyrosine hydroxylase, dopamine-ß-hydroxylase and phenylethanolamine N-methyltransferase) and cyclic adenosine monophosphate response element-binding (CREB) in the adrenal medulla, concentrations of catecholamines and corticosterone (CORT) in the plasma and the weight of adrenal glands of chronically psychosocially stressed adult rats exposed daily to 20 min treadmill running for 12 weeks. Also, we examined how additional acute immobilization stress changes the mentioned parameters. Treadmill running did not result in modulation of gene expression of catecholamine synthesizing enzymes and it decreased the level of CREB mRNA in the adrenal medulla of chronically psychosocially stressed adult rats. The potentially negative physiological adaptations after treadmill running were recorded as increased concentrations of catecholamines and decreased morning CORT concentration in the plasma, as well as the adrenal gland hypertrophy of chronically psychosocially stressed rats. The additional acute immobilization stress increases gene expression of catecholamine biosynthetic enzymes in the adrenal medulla, as well as catecholamines and CORT levels in the plasma. Treadmill exercise does not change the activity of sympatho-adrenomedullary system of chronically psychosocially stressed rats.

2012 ◽  
Vol 62 (2-3) ◽  
pp. 151-169 ◽  
Author(s):  
Ljubica Gavrilovic ◽  
Vesna Stojiljkovic ◽  
Jelena Kasapovic ◽  
Snezana Pejic ◽  
Ana Todorovic ◽  
...  

2021 ◽  
Author(s):  
Lu Fu ◽  
Hongyuan Zhang ◽  
Jeremiah Ong’achwa Machuki ◽  
Tingting Zhang ◽  
Lin Han ◽  
...  

Currently, there are no conventional treatments for stress-induced cardiomyopathy (SCM, also known as Takotsubo syndrome), and the existing therapies are not effective. The recently discovered G protein- coupled estrogen receptor (GPER) executes the rapid effects of estrogen (E2). In this study, we investigated the effects and mechanism of GPER on epinephrine (Epi)-induced cardiac stress. SCM was developed with a high dose of Epi in adult rats and human-induced pluripotent stem cells–derived cardiomyocytes(hiPSC-CMs). (1) GPER activation with agonist G1/ E2 prevented an increase in left ventricular internal diameter at end-systole, the decrease both in ejection fraction and cardiomyocyte shortening amplitude elicited by Epi. (2) G1/ E2 mitigated heart injury induced by Epi, as revealed by reduced plasma brain natriuretic peptide and lactate dehydrogenase release into culture supernatant. (3) G1/E2 prevented the raised phosphorylation and internalization of β2-adrenergic receptors(β2AR). (4) Blocking Gαi abolished the cardiomyocyte contractile inhibition by Epi. G1/E2 downregulated Gαi activity of cardiomyocytes and further upregulated cyclic adenosine monophosphate concentration in culture supernatant treated with Epi. (5) G1/E2 rescued decreased Ca2+ amplitude and Ca2+ channel current (ICa-L) in rat cardiomyocytes. Notably, the above effects of E2 were blocked by the GPER antagonist, G15. In hiPSC-CM (which expressed GPER, β1AR and β2ARs), knockdown of GPER by siRNA abolished E2 effects on increasing ICa-L and action potential duration in the stress state. In conclusion, GPER played a protective role against SCM. Mechanistically, this effect was mediated by balancing the coupling of β2AR to the Gαs and Gαi signalling pathways.


2015 ◽  
Vol 308 (6) ◽  
pp. R517-R529 ◽  
Author(s):  
Regina Nostramo ◽  
Lidia Serova ◽  
Marcela Laukova ◽  
Andrej Tillinger ◽  
Chandana Peddu ◽  
...  

The involvement of the nonclassical renin-angiotensin system (RAS) in the adrenomedullary response to stress is unclear. Therefore, we examined basal and immobilization stress (IMO)-triggered changes in gene expression of the classical and nonclassical RAS receptors in the rat adrenal medulla, specifically the angiotensin II type 2 (AT2) and type 4 (AT4) receptors, (pro)renin receptor [(P)RR], and Mas receptor (MasR). All RAS receptors were identified, with AT2 receptor mRNA levels being the most abundant, followed by the (P)RR, AT1A receptor, AT4 receptor, and MasR. Following a single IMO, AT2 and AT4 receptor mRNA levels decreased by 90 and 50%, respectively. Their mRNA levels were also transiently decreased by repeated IMO. MasR mRNA levels displayed a 75% transient decrease as well. Conversely, (P)RR mRNA levels were increased by 50% following single or repeated IMO. Because of its abundance, the function of the (P)RR was explored in PC-12 cells. Prorenin activation of the (P)RR increased phosphorylation of extracellular signal-regulated kinase 1/2 and tyrosine hydroxylase at Ser31, likely increasing its enzymatic activity and catecholamine biosynthesis. Together, the broad and dynamic changes in gene expression of the nonclassical RAS receptors implicate their role in the intricate response of the adrenomedullary catecholaminergic system to stress.


Sign in / Sign up

Export Citation Format

Share Document