scholarly journals Relationship between remote sensing data and field-observed interril erosion

2018 ◽  
Vol 53 (3) ◽  
pp. 332-341 ◽  
Author(s):  
André Geraldo de Lima Moraes ◽  
Daniel Fonseca de Carvalho ◽  
Mauro Antonio Homem Antunes ◽  
Marcos Bacis Ceddia

Abstract: The objective of this work was to evaluate the relationship between different remote sensing data, derived from satellite images, and interrill soil losses obtained in the field by using a portable rainfall simulator. The study was carried out in an area of a hydrographic basin, located in Médio Paraíba do Sul, in the state of Rio de Janeiro - one of the regions most affected by water erosion in Brazil. Evaluations were performed for different vegetation indices (NDVI, Savi, EVI, and EVI2) and fraction images (FI), derived from linear spectral mixture analysis (LSMA), obtained from RapidEye, Sentinel2A, and Landsat 8 OLI images. Vegetation indices are more adequate to predict soil loss than FI, highlighting EVI2, whose exponential model showed R2 of 0.74. The best prediction models are generated from the RapidEye image, which shows the highest spatial resolution among the sensors evaluated.

Author(s):  
K.S. Baktybekov ◽  
◽  
G.R. Kabzhanova ◽  
А.А. Aimbetov ◽  
M.T. Alibayeva ◽  
...  

Ground monitoring of soil massifs takes a lot of time, labor and material resources, although it is the most accurate and detailed. When introducing complex methods of monitoring the soil cover, the inclusion of space technologies is mandatory.Remote sensing data carry objective information over large areas, obtained in various spectral ranges. The article discusses the possibility of using remote sensing data for mapping and monitoring changes in the soil cover of Northern Kazakhstan. On the basis of thematic processing of remote sensing data of native satellites, a spatial analysis of the content of main nutrients in the sowing layer of soils was carried out, the relationship was revealed between fertility indicators and the value of vegetation indices for test ranges of the territory of Northern Kazakhstan.


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Sebastian Czapiewski ◽  
Danuta Szumińska

In the 21st century, remote sensing (RS) has become increasingly employed in many environmental studies. This paper constitutes an overview of works utilising RS methods in studies on peatlands and investigates publications from the period 2010–2021. Based on fifty-nine case studies from different climatic zones (from subarctic to subtropical), we can indicate an increase in the use of RS methods in peatland research during the last decade, which is likely a result of the greater availability of new remote sensing data sets (Sentinel 1 and 2; Landsat 8; SPOT 6 and 7) paired with the rapid development of open-source software (ESA SNAP; QGIS and SAGA GIS). In the studied works, satellite data analyses typically encompassed the following elements: land classification/identification of peatlands, changes in water conditions in peatlands, monitoring of peatland state, peatland vegetation mapping, Gross Primary Productivity (GPP), and the estimation of carbon resources in peatlands. The most frequently employed research methods, on the other hand, included: vegetation indices, soil moisture indices, water indices, supervised classification and machine learning. Remote sensing data combined with field research is deemed helpful for peatland monitoring and multi-proxy studies, and they may offer new perspectives on research at a regional level.


2021 ◽  
Vol 10 (2) ◽  
pp. 58
Author(s):  
Muhammad Fawad Akbar Khan ◽  
Khan Muhammad ◽  
Shahid Bashir ◽  
Shahab Ud Din ◽  
Muhammad Hanif

Low-resolution Geological Survey of Pakistan (GSP) maps surrounding the region of interest show oolitic and fossiliferous limestone occurrences correspondingly in Samanasuk, Lockhart, and Margalla hill formations in the Hazara division, Pakistan. Machine-learning algorithms (MLAs) have been rarely applied to multispectral remote sensing data for differentiating between limestone formations formed due to different depositional environments, such as oolitic or fossiliferous. Unlike the previous studies that mostly report lithological classification of rock types having different chemical compositions by the MLAs, this paper aimed to investigate MLAs’ potential for mapping subclasses within the same lithology, i.e., limestone. Additionally, selecting appropriate data labels, training algorithms, hyperparameters, and remote sensing data sources were also investigated while applying these MLAs. In this paper, first, oolitic (Samanasuk), fossiliferous (Lockhart and Margalla) limestone-bearing formations along with the adjoining Hazara formation were mapped using random forest (RF), support vector machine (SVM), classification and regression tree (CART), and naïve Bayes (NB) MLAs. The RF algorithm reported the best accuracy of 83.28% and a Kappa coefficient of 0.78. To further improve the targeted allochemical limestone formation map, annotation labels were generated by the fusion of maps obtained from principal component analysis (PCA), decorrelation stretching (DS), X-means clustering applied to ASTER-L1T, Landsat-8, and Sentinel-2 datasets. These labels were used to train and validate SVM, CART, NB, and RF MLAs to obtain a binary classification map of limestone occurrences in the Hazara division, Pakistan using the Google Earth Engine (GEE) platform. The classification of Landsat-8 data by CART reported 99.63% accuracy, with a Kappa coefficient of 0.99, and was in good agreement with the field validation. This binary limestone map was further classified into oolitic (Samanasuk) and fossiliferous (Lockhart and Margalla) formations by all the four MLAs; in this case, RF surpassed all the other algorithms with an improved accuracy of 96.36%. This improvement can be attributed to better annotation, resulting in a binary limestone classification map, which formed a mask for improved classification of oolitic and fossiliferous limestone in the area.


2017 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Clement Kwang ◽  
Edward Matthew Osei Jnr ◽  
Adwoa Sarpong Amoah

Remote sensing data are most often used in water bodies’ extraction studies and the type of remote sensing data used also play a crucial role on the accuracy of the extracted water features. The performance of the proposed water indexes among the various satellite images is not well documented in literature. The proposed water indexes were initially developed with a particular type of data and with advancement and introduction of new satellite images especially Landsat 8 and Sentinel, therefore the need to test the level of performance of these water indexes as new image datasets emerged. Landsat 8 and Sentinel 2A image of part Volta River was used. The water indexes were performed and then ISODATA unsupervised classification was done. The overall accuracy and kappa coefficient values range from 98.0% to 99.8% and 0.94 to 0.98 respectively. Most of water bodies enhancement indexes work better on Sentinel 2A than on Landsat 8. Among the Landsat based water bodies enhancement ISODATA unsupervised classification, the modified normalized water difference index (MNDWI) and normalized water difference index (NDWI) were the best classifier while for Sentinel 2A, the MNDWI and the automatic water extraction index (AWEI_nsh) were the optimal classifier. The least performed classifier for both Landsat 8 and Sentinel 2A was the automatic water extraction index (AWEI_sh). The modified normalized water difference index (MNDWI) has proved to be the universal water bodies enhancement index because of its performance on both the Landsat 8 and Sentinel 2A image.


Author(s):  
Ratih Dewanti Dimyati ◽  
Projo Danoedoro ◽  
Hartono Hartono ◽  
Kustiyo Kustiyo

<p>The need for remote sensing minimum cloud cover or cloud free mosaic images is now increasing in line with the increased of national development activities based on one map policy. However, the continuity and availability of cloud and haze free remote sensing data for the purpose of monitoring the natural resources are still low. This paper presents a model of medium resolution remote sensing data processing of Landsat-8 uses a new approach called mosaic tile based model (MTB), which is developed from the mosaic pixel based model (MPB) algorithm, to obtain an annual multitemporal mosaic image with minimum cloud cover mosaic imageries. The MTB model is an approach constructed from a set of pixels (called tiles) considering the image quality that is extracted from cloud and haze free areas, vegetation coverage, and open land coverage of multitemporal imageries. The data used in the model are from Landsat-8 Operational Land Imager (OLI) covering 10 scenes area, with 2.5 years recording period from June 2015 to June 2017; covered Riau, West Sumatra and North Sumatra Provinces. The MTB model is examined with tile size of 0.1 degrees (11x11 km2), 0.05 degrees (5.5x5.5 km2), and 0.02 degrees (2.2x2.2 km2). The result of the analysis shows that the smallest tile size 0.02 gives the best result in terms of minimum cloud cover and haze (or named clear area). The comparison of clear area values to cloud cover and haze for three years (2015, 2016 and 2017) for the three mosaic images of MTB are 68.2%, 78.8%, and 86.4%, respectively.</p>


2020 ◽  
pp. 69-77
Author(s):  
Anju Jangra ◽  
Anurag Airon ◽  
Ram Niwas

Forest is an essential part or backbone of the earth ecological system. In a country like India, the people and the economy of nation is mainly relies on the diversity of natural resources. In today's world degradation of forest resources is a prime concern for many of the scientists and environmentalists because the canvas had been transformed from last few decades to cultivated and non-cultivated land. In India, Haryana state has lowest forest cover i.e. 3.59% followed by Punjab 3.65%. Over the several decades, the advancement of Remote Sensing and Geographical Information System (GIS) technique has emerged as an efficient tool to monitor and analyse deforestation rate in hilly areaor over a variety of location. Remote sensing based vegetation indices show better sensitivity than individual band reflectance and hence are more preferred for assessment and monitoring of tress. The aim of the present study was to analyse the deforestation in hilly areas in Haryana State (India) by remote sensing data with a special focus on Panchkula and Yamunanagar. The information was collected through the LANDSAT 8 satellite of NASA. The result revealed that the deforestation rate is high in Hilly areas of Haryana. The study shows that the forest cover in hilly areas of Haryana in 2013 was 50,879.07 hectares and in 2019 it was 44,445.51 hectares of land. Thereby decrease in forest cover of 6,433.56 hectares had been observed in the study period of 2013-2019 i.e. 6 years. Spatial variations in deforestation were also mapped in GIS for the hilly areas in Panchkula and Yamunanagar districts of Haryana.  


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 417 ◽  
Author(s):  
Mohamed Abdelkareem ◽  
Fathy Abdalla ◽  
Samar Y. Mohamed ◽  
Farouk El-Baz

At present, the Arabian Peninsula is one of the driest regions on Earth; however, this area experienced heavy rainfall in the past thousand years. During this period, catchments received substantial amounts of surface water and sustained vast networks of streams and paleolakes, which are currently inactive. The Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture Radar (PALSAR) data reveal paleohydrologic features buried under shallow aeolian deposits in many areas of the ad-Dawasir, Sahba, Rimah/Batin, and as-Sirhan wadis. Optical remote-sensing data support that the middle of the trans-peninsula Wadi Rimah/Batin, which extends for ~1200 km from the Arabian Shield to Kuwait and covers ~200,000 km2, is dammed by linear sand dunes formed by changes in climate conditions. Integrating Landsat 8 Operational Land Imager (OLI), Geo-Eye, Shuttle Radar Topography Mission (SRTM) digital elevation model, and ALOS/PALSAR data allowed for the characterization of paleodrainage reversals and diversions shaped by structural and volcanic activity. Evidence of streams abruptly shifting from one catchment to another is preserved in Wadi ad-Dawasir along the fault trace. Volcanic activity in the past few thousand years in northern Saudi Arabia has also changed the slope of the land and reversed drainage systems. Relics of earlier drainage directions are well maintained as paleoslopes and wide upstream patterns. This study found that paleohydrologic activity in Saudi Arabia is impacted by changes in climate and by structural and volcanic activity, resulting in changes to stream direction and activity. Overall, the integration of radar and optical remote-sensing data is significant for deciphering past hydrologic activity and for predicting potential water resource areas.


Sign in / Sign up

Export Citation Format

Share Document