scholarly journals Climate Change and "historical responsibilities"

2012 ◽  
Vol 15 (1) ◽  
pp. 201-206 ◽  
Author(s):  
José Goldemberg ◽  
Patricia Maria Guardabassi

The historical responsibility of countries listed in the Annex I of the Convention on Climate Change has been used extensively as a justification for the lack of action of countries not included in Annex I to reduce their greenhouse gas emissions. We analyzed the contribution of non-Annex I countries to the CO2 emissions in the period 1850 - 2006 to assess their relative contribution to total CO2 emissions. In the period 1980 - 2006 non-Annex I countries represented 44% of the total but this contribution increased in the period 1990 - 2006 to 48%. If we extrapolate present trends to 2020 they will represent 56% in the period 1990 - 2020. The "historical responsibility" of Annex I countries is therefore decreasing. If we take 1990 as the starting year in which the Climate Convention recognized clearly that greenhouse gases are interfering dangerously with the climate system, it becomes very difficult to attribute "blame" and "guilt" to Annex I for their historical contributions. It becomes also quite clear the need of non-Annex I countries to engage with Annex I countries in the effort to reduce emissions. The Copenhagen Accord has no mention of "historical responsibilities".

2021 ◽  
pp. 1-10
Author(s):  
Eelco J. Rohling

This chapter outlines the challenge facing us. The Paris Agreement sets a target maximum of 2°C global warming and a preferred limit of 1.5°C. Yet, the subsequent combined national pledges for emission reduction suffice only for limiting warming to roughly 3°C. And because most nations are falling considerably short of meeting their pledges, even greater warming may become locked in. Something more drastic and wide-ranging is needed: a multi-pronged strategy. These different prongs to the climate-change solution are introduced in this chapter and explored one by one in the following chapters. First is rapid, massive reduction of greenhouse gas emissions. Second is implementation of ways to remove greenhouse gases from the atmosphere. Third may be increasing the reflectivity of Earth to incoming sunlight, to cool certain places down more rapidly. In addition, we need to protect ourselves from climate-change impacts that have already become inevitable.


2012 ◽  
Vol 63 (3) ◽  
pp. 269 ◽  
Author(s):  
J. A. Baldock ◽  
I. Wheeler ◽  
N. McKenzie ◽  
A. McBrateny

Organic carbon and nitrogen found in soils are subject to a range of biological processes capable of generating or consuming greenhouse gases (CO2, N2O and CH4). In response to the strong impact that agricultural management can have on the amount of organic carbon and nitrogen stored in soil and their rates of biological cycling, soils have the potential to reduce or enhance concentrations of greenhouse gases in the atmosphere. Concern also exists over the potential positive feedback that a changing climate may have on rates of greenhouse gas emission from soil. Climate projections for most of the agricultural regions of Australia suggest a warmer and drier future with greater extremes relative to current climate. Since emissions of greenhouse gases from soil derive from biological processes that are sensitive to soil temperature and water content, climate change may impact significantly on future emissions. In this paper, the potential effects of climate change and options for adaptation and mitigations will be considered, followed by an assessment of future research requirements. The paper concludes by suggesting that the diversity of climate, soil types, and agricultural practices in place across Australia will make it difficult to define generic scenarios for greenhouse gas emissions. Development of a robust modelling capability will be required to construct regional and national emission assessments and to define the potential outcomes of on-farm management decisions and policy decisions. This model development will require comprehensive field datasets to calibrate the models and validate model outputs. Additionally, improved spatial layers of model input variables collected on a regular basis will be required to optimise accounting at regional to national scales.


Author(s):  
Lotta B. Van Leeuwen

Capping greenhouse gas emissions and reducing air pollution on the farm challenges the place of the diesel tractor in future sustainable vineyards. Tractors are responsible for the largest share of all CO2 emissions at vineyard plot scale, mostly resulting from pest and disease management and soil maintenance (Adoir et al., 2019). Electric vehicles will thus be required to meet climate change reduction goals. In this article, the characteristics of battery and hydrogen electric tractors are compared, and their potential in the grapevine growing sector is assessed.


2009 ◽  
Vol 23 (2) ◽  
pp. 5-27 ◽  
Author(s):  
Gilbert E Metcalf

The United States is moving closer to enacting a policy to reduce domestic emissions of greenhouse gases. A key element in any plan to reduce emissions will be to place a price on greenhouse gas emissions. This paper discusses the different approaches that can be taken to price emissions and assesses their strengths and weaknesses.


1998 ◽  
Vol 47 (2) ◽  
pp. 446-461 ◽  
Author(s):  
Colin Warbrick ◽  
Dominic McGoldrick ◽  
Peter G. G. Davies

The Third Conference of the Parties to the United Nations Framework Convention on Climate Change (Climate Change Convention) was held from 1 to 11 December 1997 at Kyoto, Japan. Significantly the States Parties to the Convention adopted a protocol (Kyoto Protocol) on 11 December 1997 under which industrialised countries have agreed to reduce their collective emissions of six greenhouse gases by at least 5 per cent by 2008–2012. Ambassador Raul Estrada-Oyuela, who had chaired the Committee of the Whole established by the Conference to facilitate the negotiation of a Protocol text, expressed the view that: “This agreement will have a real impact on the problem of greenhouse gas emissions. Today should be remembered as the Day of the Atmosphere.” This note seeks to outline in brief the science of climate change, and international activity to combat global warming prior to the Kyoto conference. It then attempts to analyse the terms of the Kyoto Protocol and to draw some conclusions on its significance.


2020 ◽  
Author(s):  
Aylin Boztepe ◽  
Tanıl Tarhan ◽  
Zeynep Gülsoy Şerif ◽  
Adnan Şimşek

<p>Climate change is one of the most urgent issues facing humanity today. Humans have been rapidly changing the balance of gases in the atmosphere which causes global warming. Burning fossil fuels like coal and oil, farming and forestry, agriculture and cement manufacture cause to release water vapor, carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), ozone and nitrous oxide (N<sub>2</sub>O) known as the primary greenhouse gases. According to Intergovernmental Panel on Climate Change (IPCC), carbon dioxide is the most common greenhouse gas absorbing infrared energy emitted from the earth, preventing it from returning to space. It is necessary to separate man-made (anthropogenic) emissions from natural contributions in the atmosphere to obtain accurate emission data [1-4]. Since it could not be achieved with the existing metrological infrastructure, it is required to develop the measurements and references of stable isotopes of CO<sub>2</sub>. In this study, static and dynamic reference materials for pure CO<sub>2</sub> at 400 µmol/mol in air matrix were prepared and it was provided to simulate CO<sub>2</sub> gas in the atmosphere.</p><p>The static gas mixtures were prepared gravimetrically in accordance with the ISO 6142-1 standard. In order to obtain CO<sub>2</sub> gas at desired isotopic compositions, commercial CO<sub>2</sub> gases were also supplied from abroad. Their isotopic compositions were measured by using GC-IRMS. Before filling, aluminum cylinders were evacuated until the pressure of 10<sup>-7</sup> mbar using turbo-molecular vacuum pump. Isotopic compositions of reference materials were determined in a way that covering the range -42 ‰ to +1 ‰ vs VPDB for d<sup>13</sup>C-CO2 and -35 ‰ to -8 ‰ vs VPDB for d<sup>18</sup>O. In order to develop static and dynamic reference materials of CO<sub>2</sub> at 400 µmol/mol in air with the uncertainty targets of d<sup>13</sup>C-CO<sub>2</sub> 0.1 ‰ and d<sup>18</sup>O-CO<sub>2</sub> 0.5 ‰, previously prepared pure CO<sub>2</sub> reference gases were used. Dynamic dilution system with the high accuracy was constructed to generate dynamic reference gas mixture of CO<sub>2</sub> at 400 µmol/mol. System contains 3 electronic pressure controllers, 3 thermal mass flow controllers with various capacities and 3 molbloc-L flow elements commanded with 2 Molboxes. The isotopic compositions of dynamic reference gas mixtures of CO<sub>2</sub> at 400 µmol/mol were aimed to be same with the previously prepared pure CO<sub>2</sub> reference gases. The whole dilution system were calibrated at INRIM to achieve lower uncertainties around 0.07-0.09%. At the measurement stage, CRDS and GC-IRMS equipments are operated simultaneously to determine the concentrations and isotopic compositions of the gas mixtures. The amount of substance fractions of the dynamic reference mixtures are calculated according to ISO 6145-7 standard. It will be checked that whether the isotopic compositions of the gravimetrically prepared pure CO<sub>2</sub> reference gases and the dynamic reference gas mixtures of CO<sub>2</sub> at 400 µmol/mol were same or not.</p><p><strong>REFERENCES</strong></p><p>[1] Calabro P. S., “Greenhouse gases emission from municipal waste management: The role of separate collection”, Waste Management, Volume 29:7, 2178-2187, 2009.</p><p>[2] Sources of Greenhouse Gas Emissions, United States Environmental Protection Agency, https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions, 2019.</p><p>[3] Schwartz, S.E., “The Greenhouse Effect and Climate Change”, 2017.</p><p>[4] Climate Change, The Intergovernmental Panel on Climate Change, https://www.ipcc.ch/report/ar4/wg1, 2019.</p>


2017 ◽  
Vol 2 (2) ◽  
pp. 296-316
Author(s):  
Monacelli Nicholas

The imo estimates that international shipping contributes 796 tons of greenhouse gases each year, representing more than 2% of the global total. While the majority of these emissions occur at sea while transiting between ports, a non-trivial amount occurs while ships are docked. The traditional practice has been for ships to keep their engines running while in port, primarily to generate power. “Cold ironing” is when, alternatively, ships in port shut down their engines and take power from the pier. While a novel concept in the shipping industry, it has been the status quo for naval vessels for nearly a century. American ports pioneered the technology, while other global facilities have room to improve. This research investigates the extent that cold ironing will assist in reducing overall greenhouse gas emissions in Southeast Asian ports. Additionally, it looks at the hurdles to implementation, and other alternatives. Amongst a complex web of technology and regulatory schemes to minimize shipboard emissions, the practical effects and benefits of cold ironing cannot be ignored.


Author(s):  
Jason Samuel Ogola

AbstractTo identify and evaluate possible impacts of climate change on transportation in Limpopo province, it is necessary to define the scale and scope of the transportation system in the province and determine its sensitivities to climate change. This chapter, therefore locates the environment, climate change and the green economy matters in context. The science of climate change is explored, while the main sources of greenhouse gases are discussed. Additionally, the impacts of climate change in South Africa is outlined. Strategies to reduce greenhouse gas emissions (GHG) in the transport sector are provided.


2022 ◽  
Author(s):  
David Finlay

The human caused rise in atmospheric greenhouse gases has been seen as the driver of both climate change and ocean acidification. However recent peer reviewed papers show that, while GHG emissions are part of the problem, the primary driver of both climate change and ocean acidification is human caused ecological degradation. Curbing greenhouse gas emissions, to date, has been an abject failure but addressing ecological degradation within the remaining time frame is safe and achievable.


2011 ◽  
Vol 1 (2) ◽  
pp. 46 ◽  
Author(s):  
Kofo A Aderogba

Abstract The enhancement of the greenhouse effect in driving increases in temperature and many other changes associated with climate have become great concern to research. The objective of this paper is to estimate the amount of greenhouse gases in the atmosphere in Lagos Metropolis. Literatures on road and air travels were read; and also journal articles on pollution and greenhouse gases, global warming and climate change. Newspaper cuttings, magazines, and electronic media sources of data and information were used. Trends in the growth and development of railway locomotives, marine activities, vehicular movements and air travels in the metropolis were studied and correlated with the estimated greenhouse gases emitted. There is positive correlation. Vehicular movements and air travels have increased by over 50% in the last twenty years. Greenhouse gases are increasing by the day. There must be deliberate checks on gas emission from automobiles, plants and machineries and in the aviation industry.  The world is not at rest to arrest the effects of climate change and global warming.  Nigeria and Nigerians and particularly Lagosian, the government and research institutions should be parts of the efforts.   Key words: Greenhouse Gas, Emissions, Predicaments, Economic Value, Lagos Metropolis.


Sign in / Sign up

Export Citation Format

Share Document