scholarly journals Reinforced concrete beams coated with fiberglass-reinforced polymeric profiles as partial substitutes for the transverse reinforcement

Author(s):  
Igor Souza Hoffman ◽  
Jorge Henrique Piva ◽  
Augusto Wanderlind ◽  
Elaine Guglielmi Pavei Antunes

abstract: The use of GFRP (Glass Fiber Reinforced Polymers) structural profiles in the construction sector is growing due to their attractive properties, such as high mechanical strength and durability in aggressive environments. With this, it is necessary to conduct studies that deepen the knowledge about the performance of these materials in structural applications. Therefore, this work aims to analyze the mechanical performance of reinforced concrete beams coated with GFRP profiles, in comparison to reinforced concrete beams, by analyzing groups with different spacing between transversal reinforcement. In all groups there was no change in the longitudinal reinforcement, and the D and Q groups were, respectively, made up of transverse reinforcement spaced twice and quadruple the one calculated for the reference beams, and presented the GFRP profiles in their constitution. All beams were tested at four-point bending, and strain gauges were installed in one of the beams of each group studied. The results obtained in the tests showed an increase in strength of 83.67% in the beams of group D, and 79.91% for group Q, in relation to the references. The analysis of longitudinal deformations made it possible to verify increases in stiffness and the moment of cracking in composite beams. Thus, based on this study, the composite structures studied may constitute future solutions for constructions exposed to aggressive environmental conditions, in order to increase their durability and also to contribute to the design of such structural elements with lower reinforcement rates.

2019 ◽  
Vol 21 (2) ◽  
pp. 484-500
Author(s):  
Nasim Shatarat ◽  
Rozan Hunifat ◽  
Yasmin Murad ◽  
Hasan Katkhuda ◽  
Mu'tasim Abdel Jaber

2020 ◽  
Vol 8 (6) ◽  
pp. 4856-4860

This paper presents the effects of adding basalt fibres on reinforced concrete beams. The fibre volume fraction Vf ranges from 0.0 to 2.0 %. First crack load, service load, yield & ultimate load and their corresponding deflections were noted. The ductility response of BFRC beams were evaluated. The results show that 1.5% by volume of basalt fibre improves the overall performances. The maximum increase in deflection and energy ductility was found to be 34 % and 39% respectively when compared to that of reference beam. The increasing application of basalt is noticed as an insulating material in the construction and automotive industry and less hazardous than asbestos fiber. Basalt fabrics are produce d for the structural, electro-technical purposes. Structural applications include electromagnetic shielding structures, various components of automobiles, aircraft, ships and household appliances.


2019 ◽  
Vol 9 (14) ◽  
pp. 2838 ◽  
Author(s):  
Sayed Mohamad Soleimani ◽  
Sajjad Sayyar Roudsari

During dynamic events (such as impact forces), structures fail to absorb the incoming energy and catastrophic collapse may occur. Impact and quasi-static tests were carried out on reinforced concrete beams with and without externally bounded sprayed and fabric glass fiber-reinforced polymers. For impact loading, a fully instrumented drop-weight impact machine with a capacity of 14.5 kJ was used. The drop height and loading rate were varied. The load-carrying capacity of reinforced concrete beams under impact loading was obtained using instrumented anvil supports (by summing the support reactions). In quasi-static loading conditions, the beams were tested in three-point loading using a Baldwin Universal Testing Machine. ABAQUS FEA software was used to model some of the tested reinforced concrete beams. It was shown that the stiffness of reinforced concrete beams decreases with increasing drop height. It was also shown that applying sprayed glass fiber-reinforced polymers (with and without mechanical stiffeners) and fabric glass fiber-reinforced polymers on the surface of reinforced concrete beams increased the stiffness. Results obtained from the software analyses were in good agreement with the laboratory test results.


Author(s):  
Amr H. Badawy ◽  
Ahmed Hassan ◽  
Hala El-Kady ◽  
L.M. Abd-El Hafez

The behavior of unbounded post tension and reinforced concrete beams under elevated temperature was presented. The experimental work was consisted of two major phases. In the first phase, the objective was studying the mechanical performance of prestressed beam, prestressed beam with steel addition and reinforced concrete beams respectively were studied. In the second phase, the residual mechanical performance of prestressed beam, prestressed beam with steel addition and reinforced concrete beams under elevated 400oC, for 120 minutes durations. The failure mechanisms, ultimate load capacity, and deflection at critical sections were monitored. The numerical prediction of the flexural behavior of the tested specimens is presented in this paper. This includes a comparison between the numerical and experimental test results according to ANSYS models. The results indicate that the prestressed beam with steel addition and reinforced concrete beams had higher resistance to beams under elevated 400oC than that of prestressed concrete beam in terms of ultimate capacity. It is also shown that the reinforced concrete beams have higher resistance to beams under elevated temperature than that of prestressed beam, prestressed beam with steel addition.


Sign in / Sign up

Export Citation Format

Share Document