Variability and replication in insecticide resistance testing using the CDC bottle bioassay

2016 ◽  
Author(s):  
Mary A. Sorensen
2020 ◽  
Vol 7 (3) ◽  
pp. 192041
Author(s):  
Sheena Francis ◽  
Jervis Crawford ◽  
Sashell McKenzie ◽  
Towanna Campbell ◽  
Danisha Wright ◽  
...  

Insecticide resistance has become problematic in tropical and subtropical regions, where Aedes mosquitoes and Aedes -borne arboviral diseases thrive. With the recent occurrence of chikungunya and the Zika virus in Jamaica, the Ministry of Health and Wellness, Jamaica, partnered with the United States Agency for International Development to implement multiple intervention activities to reduce the Aedes aegypti populations in seven parishes across the island and to assess the susceptibility of collected samples to various concentrations of temephos, Bacillus thuringiensis subsp. israelensis, (Bti), diflubenzuron and methoprene. Of the insecticides tested, only temephos has been used in routine larviciding activities in the island. The results showed that only temephos at concentrations 0.625 ppm and Bti at concentrations 6–8 ppm were effective at causing 98–100% mortality of local Ae. aegypti at 24 h exposure. Surprisingly, the growth inhibitors diflubenzuron and methoprene had minimal effect at preventing adult emergence in Ae. aegypti larvae in the populations tested. The results demonstrate the need for insecticide resistance testing as a routine part of vector control monitoring activies in order to determine useful tools that may be incorporated to reduce the abundance of Ae. aegypti .


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 826
Author(s):  
Natalie Lissenden ◽  
Mara Kont ◽  
John Essandoh ◽  
Hanafy Ismail ◽  
Thomas Churcher ◽  
...  

Pyrethroid resistance is widespread in malaria vectors. However, differential mortality in discriminating dose assays to different pyrethroids is often observed in wild populations. When this occurs, it is unclear if this differential mortality should be interpreted as an indication of differential levels of susceptibility within the pyrethroid class, and if so, if countries should consider selecting one specific pyrethroid for programmatic use over another. A review of evidence from molecular studies, resistance testing with laboratory colonies and wild populations, and mosquito behavioural assays were conducted to answer these questions. Evidence suggested that in areas where pyrethroid resistance exists, different results in insecticide susceptibility assays with specific pyrethroids currently in common use (deltamethrin, permethrin, α-cypermethrin, and λ-cyhalothrin) are not necessarily indicative of an operationally relevant difference in potential performance. Consequently, it is not advisable to use rotation between these pyrethroids as an insecticide-resistance management strategy. Less commonly used pyrethroids (bifenthrin and etofenprox) may have sufficiently different modes of action, though further work is needed to examine how this may apply to insecticide resistance management.


2019 ◽  
Vol 35 (2) ◽  
pp. 147-150 ◽  
Author(s):  
Sarah J. McInnis ◽  
Jerome Goddard ◽  
J. Hunter Deerman ◽  
Tina Nations ◽  
Wendy C. Varnado

Author(s):  
Natalie Lissenden ◽  
Mara Kont ◽  
John Essandoh ◽  
Hanafy M Ismail ◽  
Thomas S Churcher ◽  
...  

Pyrethroid resistance is widespread in malaria vectors. However, differential mortality in discriminating dose assays to different pyrethroids is often observed in wild populations. When this occurs, it is unclear if this differential mortality should be interpreted as an indication of differential levels of susceptibility within the pyrethroid class, and if so, if countries should consider selecting one specific pyrethroid for programmatic use over another. A review of evidence from molecular studies, resistance testing with laboratory colonies and wild populations, and mosquito behavioural assays was conducted to answer these questions. Evidence suggests that in areas where pyrethroid resistance exists, different results in insecticide susceptibility assays with specific pyrethroids currently in common use (deltamethrin, permethrin, α-cypermethrin and λ-cyhalothrin) are not necessarily indicative of an operationally relevant difference in potential performance. Consequently, it is not advisable to use rotation between these pyrethroids as an insecticide resistance management strategy. Less commonly used pyrethroids (bifenthrin and etofenprox) may have sufficiently different modes of action, though further work would be needed to examine how this may apply to insecticide resistance management.


Sign in / Sign up

Export Citation Format

Share Document