scholarly journals One for All: Neural Joint Modeling of Entities and Events

Author(s):  
Trung Minh Nguyen ◽  
Thien Huu Nguyen

The previous work for event extraction has mainly focused on the predictions for event triggers and argument roles, treating entity mentions as being provided by human annotators. This is unrealistic as entity mentions are usually predicted by some existing toolkits whose errors might be propagated to the event trigger and argument role recognition. Few of the recent work has addressed this problem by jointly predicting entity mentions, event triggers and arguments. However, such work is limited to using discrete engineering features to represent contextual information for the individual tasks and their interactions. In this work, we propose a novel model to jointly perform predictions for entity mentions, event triggers and arguments based on the shared hidden representations from deep learning. The experiments demonstrate the benefits of the proposed method, leading to the state-of-the-art performance for event extraction.

Author(s):  
Jun Xiao ◽  
Hao Ye ◽  
Xiangnan He ◽  
Hanwang Zhang ◽  
Fei Wu ◽  
...  

Factorization Machines (FMs) are a supervised learning approach that enhances the linear regression model by incorporating the second-order feature interactions. Despite effectiveness, FM can be hindered by its modelling of all feature interactions with the same weight, as not all feature interactions are equally useful and predictive. For example, the interactions with useless features may even introduce noises and adversely degrade the performance. In this work, we improve FM by discriminating the importance of different feature interactions. We propose a novel model named Attentional Factorization Machine (AFM), which learns the importance of each feature interaction from data via a neural attention network. Extensive experiments on two real-world datasets demonstrate the effectiveness of AFM. Empirically, it is shown on regression task AFM betters FM with a 8.6% relative improvement, and consistently outperforms the state-of-the-art deep learning methods Wide&Deep [Cheng et al., 2016] and DeepCross [Shan et al., 2016] with a much simpler structure and fewer model parameters. Our implementation of AFM is publicly available at: https://github.com/hexiangnan/attentional_factorization_machine


2020 ◽  
Vol 34 (10) ◽  
pp. 13803-13804
Author(s):  
Anirudh Bindiganavale Harish ◽  
Fatiha Sadat

In our research, we propose a new multimodal fusion architecture for the task of sentiment analysis. The 3 modalities used in this paper are text, audio and video. Most of the current methods deal with either a feature level or a decision level fusion. In contrast, we propose an attention-based deep neural network and a training approach to facilitate both feature and decision level fusion. Our network effectively leverages information across all three modalities using a 2 stage fusion process. We test our network on the individual utterance based contextual information extracted from the CMU-MOSI Dataset. A comparison is drawn between the state-of-the-art and our network.


Author(s):  
Bo Chen ◽  
Hua Zhang ◽  
Yonglong Li ◽  
Shuang Wang ◽  
Huaifang Zhou ◽  
...  

Abstract An increasing number of detection methods based on computer vision are applied to detect cracks in water conservancy infrastructure. However, most studies directly use existing feature extraction networks to extract cracks information, which are proposed for open-source datasets. As the cracks distribution and pixel features are different from these data, the extracted cracks information is incomplete. In this paper, a deep learning-based network for dam surface crack detection is proposed, which mainly addresses the semantic segmentation of cracks on the dam surface. Particularly, we design a shallow encoding network to extract features of crack images based on the statistical analysis of cracks. Further, to enhance the relevance of contextual information, we introduce an attention module into the decoding network. During the training, we use the sum of Cross-Entropy and Dice Loss as the loss function to overcome data imbalance. The quantitative information of cracks is extracted by the imaging principle after using morphological algorithms to extract the morphological features of the predicted result. We built a manual annotation dataset containing 1577 images to verify the effectiveness of the proposed method. This method achieves the state-of-the-art performance on our dataset. Specifically, the precision, recall, IoU, F1_measure, and accuracy achieve 90.81%, 81.54%, 75.23%, 85.93%, 99.76%, respectively. And the quantization error of cracks is less than 4%.


Author(s):  
Joan Serrà

Deep learning is an undeniably hot topic, not only within both academia and industry, but also among society and the media. The reasons for the advent of its popularity are manifold: unprecedented availability of data and computing power, some innovative methodologies, minor but significant technical tricks, etc. However, interestingly, the current success and practice of deep learning seems to be uncorrelated with its theoretical, more formal understanding. And with that, deep learning’s state-of-the-art presents a number of unintuitive properties or situations. In this note, I highlight some of these unintuitive properties, trying to show relevant recent work, and expose the need to get insight into them, either by formal or more empirical means.


Author(s):  
Yantao Yu ◽  
Zhen Wang ◽  
Bo Yuan

Factorization machines (FMs) are a class of general predictors working effectively with sparse data, which represents features using factorized parameters and weights. However, the accuracy of FMs can be adversely affected by the fixed representation trained for each feature, as the same feature is usually not equally predictive and useful in different instances. In fact, the inaccurate representation of features may even introduce noise and degrade the overall performance. In this work, we improve FMs by explicitly considering the impact of individual input upon the representation of features. We propose a novel model named \textit{Input-aware Factorization Machine} (IFM), which learns a unique input-aware factor for the same feature in different instances via a neural network. Comprehensive experiments on three real-world recommendation datasets are used to demonstrate the effectiveness and mechanism of IFM. Empirical results indicate that IFM is significantly better than the standard FM model and consistently outperforms four state-of-the-art deep learning based methods.


2021 ◽  
Vol 9 ◽  
pp. 586-604
Author(s):  
Abbas Ghaddar ◽  
Philippe Langlais ◽  
Ahmad Rashid ◽  
Mehdi Rezagholizadeh

Abstract In this work, we examine the ability of NER models to use contextual information when predicting the type of an ambiguous entity. We introduce NRB, a new testbed carefully designed to diagnose Name Regularity Bias of NER models. Our results indicate that all state-of-the-art models we tested show such a bias; BERT fine-tuned models significantly outperforming feature-based (LSTM-CRF) ones on NRB, despite having comparable (sometimes lower) performance on standard benchmarks. To mitigate this bias, we propose a novel model-agnostic training method that adds learnable adversarial noise to some entity mentions, thus enforcing models to focus more strongly on the contextual signal, leading to significant gains on NRB. Combining it with two other training strategies, data augmentation and parameter freezing, leads to further gains.


2020 ◽  
Vol 6 (12) ◽  
pp. 131
Author(s):  
Stefanus Tao Hwa Kieu ◽  
Abdullah Bade ◽  
Mohd Hanafi Ahmad Hijazi ◽  
Hoshang Kolivand

The recent developments of deep learning support the identification and classification of lung diseases in medical images. Hence, numerous work on the detection of lung disease using deep learning can be found in the literature. This paper presents a survey of deep learning for lung disease detection in medical images. There has only been one survey paper published in the last five years regarding deep learning directed at lung diseases detection. However, their survey is lacking in the presentation of taxonomy and analysis of the trend of recent work. The objectives of this paper are to present a taxonomy of the state-of-the-art deep learning based lung disease detection systems, visualise the trends of recent work on the domain and identify the remaining issues and potential future directions in this domain. Ninety-eight articles published from 2016 to 2020 were considered in this survey. The taxonomy consists of seven attributes that are common in the surveyed articles: image types, features, data augmentation, types of deep learning algorithms, transfer learning, the ensemble of classifiers and types of lung diseases. The presented taxonomy could be used by other researchers to plan their research contributions and activities. The potential future direction suggested could further improve the efficiency and increase the number of deep learning aided lung disease detection applications.


2019 ◽  
Author(s):  
Aditi Iyer ◽  
Maria Thor ◽  
Rabia Haq ◽  
Joseph O. Deasy ◽  
Aditya P. Apte

AbstractPurposeDelineating the swallowing and chewing structures in Head and Neck (H&N) CT scans is necessary for radiotherapy treatment (RT) planning to reduce the incidence of radiation-induced dysphagia, trismus, and speech dysfunction. Automating this process would decrease the manual input required and yield reproducible segmentations, but generating accurate segmentations is challenging due to the complex morphology of swallowing and chewing structures and limited soft tissue contrast in CT images.MethodsWe trained deep learning models using 194 H&N CT scans from our institution to segment the masseters (left and right), medial pterygoids (left and right), larynx, and pharyngeal constrictor muscle using DeepLabV3+ with the resnet-101 backbone. Models were trained in a sequential manner to guide the localization of each structure group based on prior segmentations. Additionally, an ensemble of models was developed using contextual information from three different views (axial, coronal, and sagittal), for robustness to occasional failures of the individual models. Output probability maps were averaged, and voxels were assigned labels corresponding to the class with the highest combined probability.ResultsThe median dice similarity coefficients (DSC) computed on a hold-out set of 24 CT scans were 0.87±0.02 for the masseters, 0.80±0.03 for the medial pterygoids, 0.81±0.04 for the larynx, and 0.69±0.07for the constrictor muscle. The corresponding 95th percentile Hausdorff distances were 0.32±0.08cm (masseters), 0.42±0.2cm (medial pterygoids), 0.53±0.3cm (larynx), and 0.36±0.15cm (constrictor muscle). Dose-volume histogram (DVH) metrics previously found to correlate with each toxicity were extracted from manual and auto-generated contours and compared between the two sets of contours to assess clinical utility. Differences in DVH metrics were not found to be statistically significant (p>0.05) for any of the structures. Further, inter-observer variability in contouring was studied in 10 CT scans. Automated segmentations were found to agree better with each of the observers as compared to inter-observer agreement, measured in terms of DSC.ConclusionsWe developed deep learning-based auto-segmentation models for swallowing and chewing structures in CT. The resulting segmentations can be included in treatment planning to limit complications following RT for H&N cancer. The segmentation models developed in this work are distributed for research use through the open-source platform CERR, accessible at https://github.com/cerr/CERR.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1459
Author(s):  
Mirela Kundid Vasić ◽  
Vladan Papić

In this paper, we propose a novel method for person detection in aerial images of nonurban terrain gathered by an Unmanned Aerial Vehicle (UAV), which plays an important role in Search And Rescue (SAR) missions. The UAV in SAR operations contributes significantly due to the ability to survey a larger geographical area from an aerial viewpoint. Because of the high altitude of recording, the object of interest (person) covers a small part of an image (around 0.1%), which makes this task quite challenging. To address this problem, a multimodel deep learning approach is proposed. The solution consists of two different convolutional neural networks in region proposal, as well as in the classification stage. Additionally, contextual information is used in the classification stage in order to improve the detection results. Experimental results tested on the HERIDAL dataset achieved precision of 68.89% and a recall of 94.65%, which is better than current state-of-the-art methods used for person detection in similar scenarios. Consequently, it may be concluded that this approach is suitable for usage as an auxiliary method in real SAR operations.


Author(s):  
Fuxing Hong ◽  
Dongbo Huang ◽  
Ge Chen

Factorization Machine (FM) is a widely used supervised learning approach by effectively modeling of feature interactions. Despite the successful application of FM and its many deep learning variants, treating every feature interaction fairly may degrade the performance. For example, the interactions of a useless feature may introduce noises; the importance of a feature may also differ when interacting with different features. In this work, we propose a novel model named Interaction-aware Factorization Machine (IFM) by introducing Interaction-Aware Mechanism (IAM), which comprises the feature aspect and the field aspect, to learn flexible interactions on two levels. The feature aspect learns feature interaction importance via an attention network while the field aspect learns the feature interaction effect as a parametric similarity of the feature interaction vector and the corresponding field interaction prototype. IFM introduces more structured control and learns feature interaction importance in a stratified manner, which allows for more leverage in tweaking the interactions on both feature-wise and field-wise levels. Besides, we give a more generalized architecture and propose Interaction-aware Neural Network (INN) and DeepIFM to capture higher-order interactions. To further improve both the performance and efficiency of IFM, a sampling scheme is developed to select interactions based on the field aspect importance. The experimental results from two well-known datasets show the superiority of the proposed models over the state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document