scholarly journals An approximative inference method for solving ∃∀SO satisfiability problems

2012 ◽  
Vol 45 ◽  
pp. 79-124 ◽  
Author(s):  
H. Vlaeminck ◽  
J. Vennekens ◽  
M. Denecker ◽  
M. Bruynooghe

This paper considers the fragment ∃∀SO of second-order logic. Many interesting problems, such as conformant planning, can be naturally expressed as finite domain satisfiability problems of this logic. Such satisfiability problems are computationally hard (ΣP2) and many of these problems are often solved approximately. In this paper, we develop a general approximative method, i.e., a sound but incomplete method, for solving ∃∀SO satisfiability problems. We use a syntactic representation of a constraint propagation method for first-order logic to transform such an ∃∀SO satisfiability problem to an ∃SO(ID) satisfiability problem (second-order logic, extended with inductive definitions). The finite domain satisfiability problem for the latter language is in NP and can be handled by several existing solvers. Inductive definitions are a powerful knowledge representation tool, and this moti- vates us to also approximate ∃∀SO(ID) problems. In order to do this, we first show how to perform propagation on such inductive definitions. Next, we use this to approximate ∃∀SO(ID) satisfiability problems. All this provides a general theoretical framework for a number of approximative methods in the literature. Moreover, we also show how we can use this framework for solving practical useful problems, such as conformant planning, in an effective way.

2004 ◽  
pp. 175-190
Author(s):  
Richard Lassaigne ◽  
Michel de Rougemont

Author(s):  
Tim Button ◽  
Sean Walsh

In this chapter, the focus shifts from numbers to sets. Again, no first-order set theory can hope to get anywhere near categoricity, but Zermelo famously proved the quasi-categoricity of second-order set theory. As in the previous chapter, we must ask who is entitled to invoke full second-order logic. That question is as subtle as before, and raises the same problem for moderate modelists. However, the quasi-categorical nature of Zermelo's Theorem gives rise to some specific questions concerning the aims of axiomatic set theories. Given the status of Zermelo's Theorem in the philosophy of set theory, we include a stand-alone proof of this theorem. We also prove a similar quasi-categoricity for Scott-Potter set theory, a theory which axiomatises the idea of an arbitrary stage of the iterative hierarchy.


1984 ◽  
Vol 7 (4) ◽  
pp. 391-428
Author(s):  
Wiktor Dańko

In this paper we propose to transform the Algorithmic Theory of Stacks (cf. Salwicki [30]) into a logic for expressing and proving properties of programs with stacks. We compare this logic to the Weak Second Order Logic (cf. [11, 15]) and prove theorems concerning axiomatizability without quantifiers (an analogon of Łoś-Tarski theorem) and χ 0 - categoricity (an analogon of Ryll-Nardzewski’s theorem).


2017 ◽  
Vol 52 (1) ◽  
pp. 232-245
Author(s):  
Loris D'Antoni ◽  
Margus Veanes

1970 ◽  
Vol 35 (1) ◽  
pp. 97-104
Author(s):  
A. B. Slomson

Two cardinals are said to beindistinguishableif there is no sentence of second order logic which discriminates between them. This notion, which is defined precisely below, is closely related to that ofcharacterizablecardinals, introduced and studied by Garland in [3]. In this paper we give an algebraic criterion for two cardinals to be indistinguishable. As a consequence we obtain a straightforward proof of an interesting theorem about characterizable cardinals due to Zykov [6].


Sign in / Sign up

Export Citation Format

Share Document