Mathematical Models of Oxygen and Carbon Dioxide Storage and Transport: The Acid-Base Chemistry of Blood

2005 ◽  
Vol 33 (3) ◽  
pp. 209-264 ◽  
Author(s):  
S. E. Rees ◽  
S. Andreassen
Author(s):  
Mohammad Al-Harahsheh ◽  
Raghad Al-Khatib ◽  
Aiman Al-Rawajfeh

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kendall M. Lawrence ◽  
Barbara E. Coons ◽  
Anush Sridharan ◽  
Avery C. Rossidis ◽  
Marcus G. Davey ◽  
...  

Abstract Background Fetal surgery is increasingly performed to correct congenital defects. Currently, fetal brain perfusion cannot be assessed intra-operatively. The purpose of this study was to determine if contrast-enhanced ultrasound (CEUS) could be used to monitor fetal cerebral perfusion during fetal surgery and if parameters correlate with fetal hemodynamics or acid/base status. Methods Cannulated fetal sheep were insufflated with carbon dioxide gas in an extra-uterine support device and in utero to mimic fetal surgery. Fetal heart rate, mean arterial pressure, and arterial blood gases were serially measured. CEUS examinations of the brain were performed and time-dependent metrics were quantified to evaluate perfusion. The relationships between measured parameters were determined with mixed linear effects models or two-way repeated measures analysis of variance. Results 6 fetal sheep (113 ± 5 days) insufflated at multiple time-points (n = 20 experiments) in an extra-uterine support device demonstrated significant correlations between time-dependent perfusion parameters and fetal pH and carbon dioxide levels. In utero, 4 insufflated fetuses (105 ± 1 days) developed hypercarbic acidosis and had reductions in cerebral perfusion parameters compared to age-matched controls (n = 3). There was no significant relationship between cerebral perfusion parameters and fetal hemodynamics. Conclusions CEUS-derived cerebral perfusion parameters can be measured during simulated fetal surgery and strongly correlate with fetal acid/base status.


Sign in / Sign up

Export Citation Format

Share Document