DESIGN OF THE ADSORBENT BED OF AN ADSORPTION REFRIGERATION SYSTEM FOR ACHIEVING THE HIGHEST SPECIFIC COOLING POWER

Author(s):  
Gamze Gediz Ilis ◽  
Gizem Arslan ◽  
Moghtada Mobedi
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
V. Baiju ◽  
C. Muraleedharan

This paper proposes a new approach for the performance analysis of a single-stage solar adsorption refrigeration system with activated carbon-R134a as working pair. Use of artificial neural network has been proposed to determine the performance parameters of the system, namely, coefficient of performance, specific cooling power, adsorbent bed (thermal compressor) discharge temperature, and solar cooling coefficient of performance. The ANN used in the performance prediction was made in MATLAB (version 7.8) environment using neural network tool box.In this study the temperature, pressure, and solar insolation are used in input layer. The back propagation algorithm with three different variants namely Scaled conjugate gradient, Pola-Ribiere conjugate gradient, and Levenberg-Marquardt (LM) and logistic sigmoid transfer function were used, so that the best approach could be found. After training, it was found that LM algorithm with 9 neurons is most suitable for modeling solar adsorption refrigeration system. The ANN predictions of performance parameters agree well with experimental values with R2 values close to 1 and maximum percentage of error less than 5%. The RMS and covariance values are also found to be within the acceptable limits.


2020 ◽  
Vol 307 ◽  
pp. 01014
Author(s):  
Hicham BOUSHABA ◽  
Abdelaziz MIMET ◽  
Mohammed El GANAOUI ◽  
Abderrahman MOURADI

The aim of this paperwork is to provide a performance comparative study of an adsorption refrigeration system powered by solar heat storage based on Moroccan irradiation. The system operates with ammonia as refrigerant and activated carbon as adsorbent. A parabolic through collector is used to collect the solar energy and store it in a heat storage tank. A dynamic simulation program interpreting the real behavior of the system has been developed. The pressure, temperature and adsorbed mass profiles in the Adsorber have been revealed. The system performance is estimated in terms of the specific cooling power (SCP) and the solar coefficient of performance (SCOP). The solar irradiation and the real ambient temperature variations corresponding to the six climatic zones in Morocco are considered. The effect of those conditions on the performance of the system has been investigated. The results show the capability of our system to realize more than one cycle and produce cold during the day. For an optimal configuration of the system and operating conditions of evaporation temperature, Tev=0 °C, condensation temperature, Tcon=30 °C and generation temperature, T3=100 °C, the process could achieve a SCP of 151 W.kg-1and its solar COP could attain 0.148. The system performances improve especially in sunny area.


Author(s):  
Muji Setiyo ◽  
Bagiyo Condro Purnomo ◽  
Budi Waluyo ◽  
Suroto Munahar ◽  
Muhammad Latifur Rochman ◽  
...  

2016 ◽  
Vol 24 (02) ◽  
pp. 1630003 ◽  
Author(s):  
Anirban Sur ◽  
Randip K. Das

Researchers proved that, heat powered adsorption refrigeration technology is very effective methods for reutilization of low-grade thermal energy such as industrial waste heat, solar energy, and exhaust gases from engines. But to make it commercially competitive with the well-known vapor compression and absorption refrigeration system, the processes require high rates of heat and mass transfer characteristic between adsorbate and adsorbent as well as externally supplied heat exchanging fluid. This paper reviews various techniques that have been developed and applied to enhance the heat transfer and mass transfer in adsorber beds, and also discuss their effects of the performance on adsorption system. A comprehensive literature review has been conducted and it was concluded that this technology, although attractive, has limitations regarding its heat and mass transfer performance that seem difficult to overcome. Therefore, more researches are required to improve heat and mass transfer performance and sustainability of basic adsorption cycles.


Sign in / Sign up

Export Citation Format

Share Document