Perturbation-Based Analysis to Investigate the Effects of Temperature-Dependent Viscosity in a Two-Layer Plane Couette Flow

2005 ◽  
Vol 36 (1-2) ◽  
pp. 141-149
Author(s):  
Ali A. Ranjbar
2011 ◽  
Vol 133 (10) ◽  
Author(s):  
Stefano Del Giudice ◽  
Stefano Savino ◽  
Carlo Nonino

Abstract In this paper a parametric investigation is carried out on the effects of temperature dependent viscosity in simultaneously, i.e., hydro-dynamically and thermally, developing laminar flows of liquids in straight ducts of constant cross sections. Uniform heat flux boundary conditions are imposed on the heated walls of the ducts. Different cross-sectional geometries are considered, corresponding to both axisymmetric (circular and concentric annular) and three-dimensional (rectangular and trapezoidal) ducts. Viscosity is assumed to vary with temperature according to an exponential relation, while the other fluid properties are held constant. A finite element procedure is employed for the solution of the parabolized momentum and energy equations. Computed axial distributions of the local Nusselt number and of the apparent Fanning friction factor are presented for different values of the Pearson and Prandtl numbers. Numerical results confirm that, in the laminar forced convection in the entrance region of straight ducts, the effects of temperature dependent viscosity cannot be neglected in a wide range of operative conditions. Correlations are also provided for the local Nusselt number and the apparent Fanning friction factor in simultaneously developing flows in ducts of different cross sections.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Oluwole Makinde ◽  
Oswald Franks

AbstractThis study is devoted to investigate the effect of magnetic field on a reactive unsteady generalized Couette flow with temperature dependent viscosity and thermal conductivity. It is assumed that conducting incompressible fluid is subjected to an exothermic reaction under Arrhenius kinetics, neglecting the consumption of the material. The model nonlinear differential equations governing the transient momentum and energy balance are obtained and tackled numerically using a semi-discretization finite difference technique coupled with Runge-Kutta Fehlberg integration scheme. Important properties of the velocity and temperature fields including thermal stability conditions are presented graphically and discussed quantitatively.


Sign in / Sign up

Export Citation Format

Share Document