AIR-SIDE FLOW AND HEAT TRANSFER FOR AN INCLINED OFFSET STRIP FIN-TUBE HEAT EXCHANGER WITH GROOVES

Author(s):  
Jin-Hyo Bae ◽  
Man-Heung Park ◽  
Jae-Heon Lee ◽  
Myung-Do Oh
Author(s):  
Bin Gao ◽  
Qincheng Bi ◽  
Zesen Nie

Different overlap configurations of discontinuous helical baffles affect the flow pattern of the shell-side fluid directly, and thus there is a significant impact on the flow and heat transfer characteristics of the shell-side fluid. In the present paper, experiments were carried out to study the impact of baffle overlap proportion on the shell-side flow and heat transfer performance of the shell-and-tube heat exchanger with helical baffles (STHEHB). Two different shell-side friction factors, the friction factor per helical pitch (fs,1B) and the friction factor per tube length (fs,1m), were defined based on different reference lengths. The results showed that, since the baffle overlap proportion leads to different helical pitch as well as flow fields in shell side, opposite conclusions are obtained by choosing different reference length. Based on the same Reynolds number, the shell-side Nusselt number of the STHEHB with 10% baffle overlap is higher than that with 50% baffle overlap. The reason is that the larger baffle overlap proportion produces more serious leak flows and weakens the heat transfer in shell side. The comparison of heat transfer coefficient per unit pressure drop versus shell-side flow rate showed that the STHEHB with smaller baffle overlap proportion has better comprehensive heat transfer performance, but the difference between the two decreases gradually with the increase of the flow rate.


2002 ◽  
Vol 16 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Seong-Yeon Yoo ◽  
Dong-Seong Park ◽  
Min-Ho Chung ◽  
Sang-Yun Lee

2021 ◽  
Vol 11 (19) ◽  
pp. 9261
Author(s):  
Yun-Seok Choi ◽  
Youn-Jea Kim

As electrical devices become smaller, it is essential to maintain operating temperature for safety and durability. Therefore, there are efforts to improve heat transfer performance under various conditions, such as using extended surfaces and nanofluids. Among them, cooling methods using ferrofluid are drawing the attention of many researchers. This fluid can control the movement of the fluid in magnetic fields. In this study, the heat transfer performance of a fin-tube heat exchanger, using ferrofluid as a coolant, was analyzed when external magnetic fields were applied. Permanent magnets were placed outside the heat exchanger. When the magnetic fields were applied, a change in the thermal boundary layer was observed. It also formed vortexes, which affected the formation of flow patterns. The vortex causes energy exchanges in the flow field, activating thermal diffusion and improving heat transfer. A numerical analysis was used to observe the cooling performance of heat exchangers, as the strength and number of the external magnetic fields were varying. VGs (vortex generators) were also installed to create vortex fields. A convective heat transfer coefficient was calculated to determine the heat transfer rate. In addition, the comparative analysis was performed with graphical results using contours of temperature and velocity.


1966 ◽  
Vol 88 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Franz J. Schulenberg

Finned circular tubes have been used exclusively in air-cooled heat exchangers built for the American petroleum and chemical industries. In Europe, however, other tube geometries, in particular, finned elliptical tubes, have been used with great success. In this paper, the theory of the finned elliptical tube and its application in air-cooled heat exchangers are discussed. Finned circular and elliptical tubes are compared; it is shown that the developed heat transfer surface alone is not a sufficient criterion for predicting the performance of an air-cooled fin-tube heat exchanger.


Author(s):  
Jieun Hwang ◽  
Keumnam Cho

Heat exchanger experiences frost on its surface when it operates below 0°C under heating condition of the heat pump. Since frost blocks air flow through the fin tube heat exchanger, it increases air-side pressure drop and deteriorates heat transfer rate of the heat exchanger. Prediction of the frost profiles on the heat exchanger is needed to minimize the unfavorable effect on the heat exchanger by frost. The present study predicts non-uniform frost distribution on the surface of fin-tube heat exchanger and shows its accuracy by comparing with measured profiles. Fin and tube heat exchanger for heat pump was considered for the frost prediction under practical refrigerant and air conditions. Non-uniform frost pattern was predicted by using segment by segment method of the heat exchanger. Heat transfer rate and exit temperature of air and refrigerant for each segment were calculated by applying ε-NTU method. Air volume flow rate in the front of the heat exchanger was decreased as frost goes on. It was utilized for the prediction of the frost formation. Numerically predicted results were compared with measured local data. They agreed within ±10.4% under the ISO 5151 condition.


Sign in / Sign up

Export Citation Format

Share Document