HEAT AND MASS TRANSFER PERFORMANCE RESEARCH ON MULTIEFFECT VERTICAL TUBULAR SOLAR STILLS WITH GRAVITY FEED FOR SINGLE FAMILY USE

2018 ◽  
Author(s):  
ZeHui Chang ◽  
Yang Liu ◽  
Jianye Li ◽  
Wenlong Li ◽  
HongFei Zheng
2016 ◽  
Vol 24 (02) ◽  
pp. 1630003 ◽  
Author(s):  
Anirban Sur ◽  
Randip K. Das

Researchers proved that, heat powered adsorption refrigeration technology is very effective methods for reutilization of low-grade thermal energy such as industrial waste heat, solar energy, and exhaust gases from engines. But to make it commercially competitive with the well-known vapor compression and absorption refrigeration system, the processes require high rates of heat and mass transfer characteristic between adsorbate and adsorbent as well as externally supplied heat exchanging fluid. This paper reviews various techniques that have been developed and applied to enhance the heat transfer and mass transfer in adsorber beds, and also discuss their effects of the performance on adsorption system. A comprehensive literature review has been conducted and it was concluded that this technology, although attractive, has limitations regarding its heat and mass transfer performance that seem difficult to overcome. Therefore, more researches are required to improve heat and mass transfer performance and sustainability of basic adsorption cycles.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
L. Jiang ◽  
L. W. Wang ◽  
Z. Q. Jin ◽  
B. Tian ◽  
R. Z. Wang

Properties, such as thermal conductivity and permeability, are important for the heat and mass transfer performance in sorption refrigeration. This Technical Brief investigates the thermal conductivity and permeability of eight types of chlorides, which are consolidated with expanded natural graphite (ENG) for the heat transfer intensification.


2014 ◽  
Vol 989-994 ◽  
pp. 3100-3104
Author(s):  
Rui Hang Zhang ◽  
Zi Ye Wang ◽  
Run Ping Niu

TA mathematical model describing heat and mass transfer performance of packed-type parallel flow dehumidifier was set up. The numerical solution of differential equations was derived. Taking the heat and mass transfer coefficients obtained by experiments as the input parameters of the model, the impact of solution inlet parameters on outlet parameter of air was described. The simulation results indicated that the mathematical model could be used to predict the performance of liquid dehumidification. The results showed that the mathematical model can be of great value in the design and improvement of dehumidifier.


Desalination ◽  
2019 ◽  
Vol 469 ◽  
pp. 114089 ◽  
Author(s):  
Jin Tang ◽  
Chuyi Wang ◽  
Wenjing Xie ◽  
Yahao Xia ◽  
Tao Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document