AN ANALYTICAL MODEL FOR CONDENSING AND EVAPORATING TWO-COMPONENT TWO-PHASE ANNULAR FLOW

Author(s):  
John A. Tichy ◽  
Nelson A. Macken ◽  
Walter M. Duval
2020 ◽  
Vol 44 (3) ◽  
pp. 362-384
Author(s):  
Amen Younes ◽  
Ibrahim Hassan ◽  
Lyes Kadem

A semi-analytical model for predicting heat transfer and pressure drop in annular flow regime for saturated flow boiling in a horizontal microtube at a uniform heat flux has been developed based on a one-dimensional separated flow model. More than 600 two-phase heat transfer, 498 two-phase pressure drop, and 153 void fraction experimental data points for annular flow regime were collected from the literature to validate the present model. The collected data were recorded for various working fluids, R134a, R1234ze, R236fa, R410a, R113, and CO2, for round macro- and microsingle horizontal tubes with an inner diameter range of 0.244 mm ≤ Dh ≤ 3.1 mm, a heated length to diameter ratio of 90 ≤ Lh/Dh ≤ 2000, a saturation temperature range of –10 ≤ Tsat ≤ +50 °C, and liquid to vapor density ratios in the range 6.4 ≤ ρf/ρg ≤ 188. The model was tested for laminar and turbulent flow boiling conditions corresponding to an equivalent Reynolds number, 1900 ≤ Reeq ≤ 48 000, and confinement number, 0.27 ≤ Cconf ≤ 3.4. Under the annular flow regime, the present model predicted the collected data of the heat transfer, pressure drop, and void fraction with mean absolute errors (MAE) of 18.14%, 23.02%, and 3.22%, respectively.


1994 ◽  
Vol 59 (12) ◽  
pp. 2595-2603
Author(s):  
Lothar Ebner ◽  
Marie Fialová

Two regions of instabilities in horizontal two-phase flow were detected. The first was found in the transition from slug to annular flow, the second between stratified and slug flow. The existence of oscillations between the slug and annular flows can explain the differences in the limitation of the slug flow in flow regime maps proposed by different authors. Coexistence of these two regimes is similar to bistable behaviour of some differential equation solutions.


1992 ◽  
Vol 114 (1) ◽  
pp. 14-30 ◽  
Author(s):  
E. F. Caetano ◽  
O. Shoham ◽  
J. P. Brill

Mechanistic models have been developed for each of the existing two-phase flow patterns in an annulus, namely bubble flow, dispersed bubble flow, slug flow, and annular flow. These models are based on two-phase flow physical phenomena and incorporate annulus characteristics such as casing and tubing diameters and degree of eccentricity. The models also apply the new predictive means for friction factor and Taylor bubble rise velocity presented in Part I. Given a set of flow conditions, the existing flow pattern in the system can be predicted. The developed models are applied next for predicting the flow behavior, including the average volumetric liquid holdup and the average total pressure gradient for the existing flow pattern. In general, good agreement was observed between the experimental data and model predictions.


Author(s):  
Hiroshi Kanno ◽  
Youngbae Han ◽  
Yusuke Saito ◽  
Naoki Shikazono

Heat transfer in micro scale two-phase flow attracts large attention since it can achieve large heat transfer area per density. At high quality, annular flow becomes one of the major flow regimes in micro two-phase flow. Heat is transferred by evaporation or condensation of the liquid film, which are the dominant mechanisms of micro scale heat transfer. Therefore, liquid film thickness is one of the most important parameters in modeling the phenomena. In macro tubes, large numbers of researches have been conducted to investigate the liquid film thickness. However, in micro tubes, quantitative information for the annular liquid film thickness is still limited. In the present study, annular liquid film thickness is measured using a confocal method, which is used in the previous study [1, 2]. Glass tubes with inner diameters of 0.3, 0.5 and 1.0 mm are used. Degassed water and FC40 are used as working fluids, and the total mass flux is varied from G = 100 to 500 kg/m2s. Liquid film thickness is measured by laser confocal displacement meter (LCDM), and the liquid-gas interface profile is observed by a high-speed camera. Mean liquid film thickness is then plotted against quality for different flow rates and tube diameters. Mean thickness data is compared with the smooth annular film model of Revellin et al. [3]. Annular film model predictions overestimated the experimental values especially at low quality. It is considered that this overestimation is attributed to the disturbances caused by the interface ripples.


Sign in / Sign up

Export Citation Format

Share Document