In Vitro Anti-proliferative Effects on NB4 Human Leukemia Cells and Physicochemical Screening of Pleurotus sp. (Higher Basidiomycetes) Mycelia from Cuba

2014 ◽  
Vol 16 (3) ◽  
pp. 239-245 ◽  
Author(s):  
Humberto J. Morris ◽  
Edgar Hernandez ◽  
Gabriel Llaurado ◽  
Maria Cristina Tejedor ◽  
Pilar Sancho ◽  
...  
2010 ◽  
Vol 9 (3) ◽  
pp. 298-308 ◽  
Author(s):  
Kuan-Hung Lu ◽  
Yuh-Fang Chang ◽  
Pen-Hui Yin ◽  
Ting-Ting Chen ◽  
Yu-Ling Ho ◽  
...  

Steroids ◽  
2011 ◽  
Vol 76 (1-2) ◽  
pp. 156-162 ◽  
Author(s):  
Renáta Minorics ◽  
Thomas Szekeres ◽  
Georg Krupitza ◽  
Philipp Saiko ◽  
Benedikt Giessrigl ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin C. Ede ◽  
Paraskevi Diamanti ◽  
David S. Williams ◽  
Allison Blair

AbstractDexamethasone (Dex) is a highly insoluble front-line drug used in cancer therapy. Data from clinical trials indicates that the pharmacokinetics of Dex vary considerably between patients and prolonging drug exposure rather than increasing absolute dose may improve efficacy. Non-toxic, fully biodegradable Dex loaded nanovectors (NV) were formulated, via simple direct hydration within 10 min, as a vehicle to extend exposure and distribution in vivo. Dex-NV were just as effective as the free drug against primary human leukemia cells in vitro and in vivo. Importantly, high levels of DMSO solvent were not required in the NV formulations. Broad distribution of NV was seen rapidly following inoculation into mice. NV accumulated in major organs, including bone marrow and brain, known sanctuary sites for ALL. The study describes a non-toxic, more easily scalable system for improving Dex solubility for use in cancer and can be applied to other medical conditions associated with inflammation.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1015-1022 ◽  
Author(s):  
EA Machado ◽  
DA Gerard ◽  
CB Lozzio ◽  
BB Lozzio ◽  
JR Mitchell ◽  
...  

Abstract To study the influence of a biologic environment on cultured human leukemia cells, KG-1, KG-1a, and HL-60 cells were inoculated subcutaneously into newborn nude mice. The cells developed myelosarcomas at the site of inoculation and in lungs and kidneys. KG-1 and HL-60 myelosarcomas were successfully passaged through adult nude mice, whereas KG-1a tumors proliferated only after transplantation into newborn hosts. The human nature of the cells forming myelosarcomas in mice was assessed by chromosomal analyses and detection of cross- reactivity with an antibody to the human leukemia cell line K562. We undertook electron microscopic and cytochemical examinations of the cells proliferating in vitro and in the mice. The granules of KG-1 cells in vivo did not react for acid phosphatase, as observed in vitro, and the HL-60 cells proliferating in mice lost the perinuclear myeloperoxidase (MPO) demonstrated in cultured cells. Although the influence of an in vivo selection of cell subpopulations cannot be ruled out, the enzymatic changes are compatible with induced cell differentiation. Conclusive evidence of differentiation in vivo was observed in the KG-1a cell subline. The undifferentiated KG-1a blasts developed cytoplasmic granules and synthesized MPO during proliferation in vivo. These observations indicate that human leukemia cells from established cell lines proliferate in nude mice and may acquire new differentiated properties in response to the in vivo environment.


Sign in / Sign up

Export Citation Format

Share Document